1
|
de Jong SI, Sorokin DY, van Loosdrecht MCM, Pabst M, McMillan DGG. Membrane proteome of the thermoalkaliphile Caldalkalibacillus thermarum TA2.A1. Front Microbiol 2023; 14:1228266. [PMID: 37577439 PMCID: PMC10416648 DOI: 10.3389/fmicb.2023.1228266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Proteomics has greatly advanced the understanding of the cellular biochemistry of microorganisms. The thermoalkaliphile Caldalkalibacillus thermarum TA2.A1 is an organism of interest for studies into how alkaliphiles adapt to their extreme lifestyles, as it can grow from pH 7.5 to pH 11. Within most classes of microbes, the membrane-bound electron transport chain (ETC) enables a great degree of adaptability and is a key part of metabolic adaptation. Knowing what membrane proteins are generally expressed is crucial as a benchmark for further studies. Unfortunately, membrane proteins are the category of proteins hardest to detect using conventional cellular proteomics protocols. In part, this is due to the hydrophobicity of membrane proteins as well as their general lower absolute abundance, which hinders detection. Here, we performed a combination of whole cell lysate proteomics and proteomics of membrane extracts solubilised with either SDS or FOS-choline-12 at various temperatures. The combined methods led to the detection of 158 membrane proteins containing at least a single transmembrane helix (TMH). Within this data set we revealed a full oxidative phosphorylation pathway as well as an alternative NADH dehydrogenase type II (Ndh-2) and a microaerophilic cytochrome oxidase ba3. We also observed C. thermarum TA2.A1 expressing transporters for ectoine and glycine betaine, compounds that are known osmolytes that may assist in maintaining a near neutral internal pH when the external pH is highly alkaline.
Collapse
Affiliation(s)
- Samuel I. de Jong
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Dimitry Y. Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
2
|
Daebeler A, Kitzinger K, Koch H, Herbold CW, Steinfeder M, Schwarz J, Zechmeister T, Karst SM, Albertsen M, Nielsen PH, Wagner M, Daims H. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. THE ISME JOURNAL 2020; 14:2967-2979. [PMID: 32709974 PMCID: PMC7784846 DOI: 10.1038/s41396-020-0724-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022]
Abstract
Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH. Nitrospira distribution, diversity, and ecophysiology were studied in hypo- and subsaline (1.3-12.8 g salt/l), highly alkaline (pH 8.9-10.3) lakes by amplicon sequencing, metagenomics, and cultivation-based approaches. Surprisingly, not only were Nitrospira populations detected, but they were also considerably diverse with presence of members from Nitrospira lineages I, II and IV. Furthermore, the ability of Nitrospira enrichment cultures to oxidize nitrite at neutral to highly alkaline pH of 10.5 was demonstrated. Metagenomic analysis of a newly enriched Nitrospira lineage IV species, "Candidatus Nitrospira alkalitolerans", revealed numerous adaptive features of this organism to its extreme environment. Among them were a sodium-dependent N-type ATPase and NADH:quinone oxidoreductase next to the proton-driven forms usually found in Nitrospira. Other functions aid in pH and cation homeostasis and osmotic stress defense. "Ca. Nitrospira alkalitolerans" also possesses group 2a and 3b [NiFe] hydrogenases, suggesting it can use hydrogen as alternative energy source. These results reveal how Nitrospira cope with strongly fluctuating pH and salinity conditions and expand our knowledge of nitrogen cycling in extreme habitats.
Collapse
Affiliation(s)
- Anne Daebeler
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
| | - Katharina Kitzinger
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Max Planck Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Hanna Koch
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Craig W Herbold
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela Steinfeder
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Jasmin Schwarz
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
- University of Vienna, The Comammox Research Platform, Vienna, Austria.
| |
Collapse
|
3
|
Ding B, Zhang X, Xu Y, An L, Liu X, Su Q. The bacterial potassium transporter gene MbtrkH improves K+ uptake in yeast and tobacco. PLoS One 2020; 15:e0236246. [PMID: 32804956 PMCID: PMC7430745 DOI: 10.1371/journal.pone.0236246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
K+ is an essential nutrient for plant growth and is responsible for many important physiological processes. K+ deficiency leads to crop yield losses, and overexpression of K+ transporter genes has been proven to be an effective way to resolve this problem. However, current research on the overexpression of K+ transporter genes is limited to plant sources. TrkH is a bacterial K+ transporter whose function generally depends on the regulation of TrkA. To date, whether TrkH can improve K+ uptake in eukaryotic organisms is still unknown. In this study, a novel MbtrkH gene was cloned from marine microbial metagenomic DNA. Functional complementation and K+-depletion analyses revealed that MbTrkH functions in K+ uptake in the K+-deficient yeast strain CY162. Moreover, K+-depletion assays revealed that MbtrkH overexpression improves plant K+ uptake. K+ hydroponic culture experiments showed that, compared with WT tobacco lines, MbtrkH transgenic tobacco lines had significantly greater fresh weights, dry weights and K+ contents. These results indicate that MbTrkH promotes K+ uptake independently of TrkA in eukaryotes and provide a new strategy for improving K+-use efficiency in plants.
Collapse
Affiliation(s)
- Baojuan Ding
- School of Bioengineering, Dalian University of Technology, Dalian, P. R. China
| | - Xiaoyan Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, P. R. China
| | - Yongsheng Xu
- School of Bioengineering, Dalian University of Technology, Dalian, P. R. China
| | - Lijia An
- School of Bioengineering, Dalian University of Technology, Dalian, P. R. China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, P. R. China
| | - Qiao Su
- School of Bioengineering, Dalian University of Technology, Dalian, P. R. China
| |
Collapse
|