1
|
de la Torre P, Flores AI. Current Status and Future Prospects of Perinatal Stem Cells. Genes (Basel) 2020; 12:6. [PMID: 33374593 PMCID: PMC7822425 DOI: 10.3390/genes12010006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023] Open
Abstract
The placenta is a temporary organ that is discarded after birth and is one of the most promising sources of various cells and tissues for use in regenerative medicine and tissue engineering, both in experimental and clinical settings. The placenta has unique, intrinsic features because it plays many roles during gestation: it is formed by cells from two individuals (mother and fetus), contributes to the development and growth of an allogeneic fetus, and has two independent and interacting circulatory systems. Different stem and progenitor cell types can be isolated from the different perinatal tissues making them particularly interesting candidates for use in cell therapy and regenerative medicine. The primary source of perinatal stem cells is cord blood. Cord blood has been a well-known source of hematopoietic stem/progenitor cells since 1974. Biobanked cord blood has been used to treat different hematological and immunological disorders for over 30 years. Other perinatal tissues that are routinely discarded as medical waste contain non-hematopoietic cells with potential therapeutic value. Indeed, in advanced perinatal cell therapy trials, mesenchymal stromal cells are the most commonly used. Here, we review one by one the different perinatal tissues and the different perinatal stem cells isolated with their phenotypical characteristics and the preclinical uses of these cells in numerous pathologies. An overview of clinical applications of perinatal derived cells is also described with special emphasis on the clinical trials being carried out to treat COVID19 pneumonia. Furthermore, we describe the use of new technologies in the field of perinatal stem cells and the future directions and challenges of this fascinating and rapidly progressing field of perinatal cells and regenerative medicine.
Collapse
Affiliation(s)
| | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n, 28041 Madrid, Spain;
| |
Collapse
|
2
|
Ma R, Schär M, Chen T, Wang H, Wada S, Ju X, Deng XH, Rodeo SA. Use of Human Placenta-Derived Cells in a Preclinical Model of Tendon Injury. J Bone Joint Surg Am 2019; 101:e61. [PMID: 31274724 DOI: 10.2106/jbjs.15.01381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Emerging data suggest that human cells derived from extraembryonic tissues may have favorable musculoskeletal repair properties. The purpose of this study was to determine whether the injection of human placenta-derived mesenchymal-like stromal cells, termed placental expanded cells (PLX-PAD), would improve tendon healing in a preclinical model of tendinopathy. METHODS Sixty male Sprague-Dawley rats underwent bilateral patellar tendon injection with either saline solution (control) or PLX-PAD cells (2 × 10 cells/100 µL) 6 days after collagenase injection to induce tendon degeneration. Animals were killed at specific time points for biomechanical, histological, and gene expression analyses of the healing patellar tendons. RESULTS Biomechanical testing 2 weeks after the collagenase injury demonstrated better biomechanical properties in the tendons treated with PLX-PAD cells. The load to failure of the PLX-PAD-treated tendons was higher than that of the saline-solution-treated controls at 2 weeks (77.01 ± 10.51 versus 58.87 ± 11.97 N, p = 0.01). There was no significant difference between the 2 groups at 4 weeks. There were no differences in stiffness at either time point. Semiquantitative histological analysis demonstrated no significant differences in collagen organization or cellularity between the PLX-PAD and saline-solution-treated tendons. Gene expression analysis demonstrated higher levels of interleukin-1β (IL-1β) and IL-6 early in the healing process in the PLX-PAD-treated tendons. CONCLUSIONS Human placenta-derived cell therapy induced an early inflammatory response and a transient beneficial effect on tendon failure load in a model of collagenase-induced tendon degeneration. CLINICAL RELEVANCE Human extraembryonic tissues, such as the placenta, are an emerging source of cells for musculoskeletal repair and may hold promise as a point-of-care cell therapy for tendon injuries.
Collapse
Affiliation(s)
- Richard Ma
- Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
| | - Michael Schär
- Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, NY
| | - Tina Chen
- Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
| | - Hongsheng Wang
- Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, NY
| | - Susumu Wada
- Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, NY
| | - Xiadong Ju
- Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, NY
| | - Xiang-Hua Deng
- Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, NY
| | - Scott A Rodeo
- Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, NY
| |
Collapse
|
3
|
Jeon YJ, Kim J, Cho JH, Chung HM, Chae JI. Comparative Analysis of Human Mesenchymal Stem Cells Derived From Bone Marrow, Placenta, and Adipose Tissue as Sources of Cell Therapy. J Cell Biochem 2015; 117:1112-25. [PMID: 26448537 DOI: 10.1002/jcb.25395] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
Various source-derived mesenchymal stem cells (MSCs) with multipotent capabilities were considered for cell therapeutics of incurable diseases. The applicability of MSCs depends on the cellular source and on their different in vivo functions, despite having similar phenotypic and cytological characteristics. We characterized MSCs from different sources, including human bone marrow (BM), placenta (PL), and adipose tissue (AT), in terms of the phenotype, surface antigen expression, differentiation ability, proteome reference map, and blood flow recovery in a hindlimb ischemic disease model. The MSCs exhibit different differentiation potentials depending on the cellular source despite having similar phenotypic and surface antigen expression. We identified approximately 90 differentially regulated proteins. Most up- or down-regulated proteins show cytoskeletal or oxidative stress, peroxiredoxin, and apoptosis roles according to their functional involvement. In addition, the PL-MSCs retained a higher therapeutic efficacy than the BM- and AT-MSCs in the hindlimb ischemic disease model. In summary, we examined differentially expressed key regulatory factors for MSCs that were obtained from several cellular sources and demonstrated their differentially expressed proteome profiles. Our results indicate that primitive PL-MSCs have biological advantages relative to those from other sources, making PL-MSCs a useful model for clinical applications of cell therapy.
Collapse
Affiliation(s)
- Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Jumi Kim
- Samsung Advanced Institute of Technology, Well Aging Research Center, Suwon, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| |
Collapse
|
4
|
Jin J, Wang J, Huang J, Huang F, Fu J, Yang X, Miao Z. Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits. J Biosci Bioeng 2014; 118:593-8. [PMID: 24894683 DOI: 10.1016/j.jbiosc.2014.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/07/2014] [Accepted: 05/03/2014] [Indexed: 12/13/2022]
Abstract
The main requirements for successful tissue engineering of the bone are non-immunogenic cells with osteogenic potential and a porous biodegradable scaffold. The purpose of this study is to evaluate the potential of a silk fibroin/hydroxyapatite (SF/HA) porous material as a delivery vehicle for human placenta-derived mesenchymal stem cells (PMSCs) in a rabbit radius defect model. In this study, we randomly assigned 16 healthy adult New Zealand rabbits into two groups, subjected to transplantation with either SF/HA and PMSCs (experimental group) or SF/HA alone (control group). To evaluate fracture healing, we assessed the extent of graft absorption, the quantity of newly formed bone, and re-canalization of the cavitas medullaris using radiographic and histological tools. We performed flow cytometric analysis to characterize PMSCs, and found that while they express CD90, CD105 and CD73, they stain negative for HLA-DR and the hematopoietic cell surface markers CD34 and CD45. When PMSCs were exposed to osteogenic induction medium, they secreted calcium crystals that were identified by von Kossa staining. Furthermore, when seeded on the surface of SF/HA scaffold, they actively secreted extracellular matrix components. Here, we show, through radiographic and histological analyses, that fracture healing in the experimental group is significantly improved over the control group. This strongly suggests that transplantation of human PMSCs grown in an SF/HA scaffold into injured radius segmental bone in rabbits, can markedly enhance tissue repair. Our finding provides evidence supporting the utility of human placenta as a potential source of stem cells for bone tissue engineering.
Collapse
Affiliation(s)
- Jun Jin
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Jun Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Jian Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Fang Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Jianhong Fu
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Xinjing Yang
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Zongning Miao
- The Stem Cell Research Lab of Wuxi, No. 3 People's Hospital, Xingyuan Bei Road, Wuxi 214041, China.
| |
Collapse
|
5
|
Yeh HY, Lin TY, Lin CH, Yen BL, Tsai CL, Hsu SH. Neocartilage formation from mesenchymal stem cells grown in type II collagen-hyaluronan composite scaffolds. Differentiation 2014; 86:171-83. [PMID: 24462469 DOI: 10.1016/j.diff.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) collagen type II-hyaluronan (HA) composite scaffolds (CII-HA) which mimics the extracellular environment of natural cartilage were fabricated in this study. Rheological measurements demonstrated that the incorporation of HA increased the compression modulus of the scaffolds. An initial in vitro evaluation showed that scaffolds seeded with porcine chondrocytes formed cartilaginous-like tissue after 8 weeks, and HA functioned to promote the growth of chondrocytes into scaffolds. Placenta-derived multipotent cells (PDMC) and gingival fibroblasts (GF) were seeded on tissue culture polystyrene (TCPS), CII-HA films, and small intestinal submucosa (SIS) sheets for comparing their chondrogenesis differentiation potentials with those of adipose-derived adult stem cells (ADAS) and bone marrow-derived mesenchymal stem cells (BMSC). Among different cells, PDMC showed the greatest chondrogenic differentiation potential on both CII-HA films and SIS sheets upon TGF-β3 induction, followed by GF. This was evidenced by the up-regulation of chondrogenic genes (Sox9, aggrecan, and collagen type II), which was not observed for cells grown on TCPS. This finding suggested the essential role of substrate materials in the chondrogenic differentiation of PDMC and GF. Neocartilage formation was more obvious in both PDMC and GF cells plated on CII-HA composite scaffolds vs. 8-layer SIS at 28 days in vitro. Finally, implantation of PDMC/CII-HA constructs into NOD-SCID mice confirmed the formation of tissue-engineered cartilage in vivo.
Collapse
Affiliation(s)
- Hsi-Yi Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Huan Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - B Linju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Lin Tsai
- Department of Orthopaedics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
6
|
Comparison of cell proliferation, apoptosis, cellular morphology and ultrastructure between human umbilical cord and placenta-derived mesenchymal stem cells. Neurosci Lett 2013; 541:77-82. [PMID: 23523648 DOI: 10.1016/j.neulet.2013.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 12/27/2022]
Abstract
Research in mesenchymal stem cells (MSCs) is mainly focused on applications for treatments of brain and spinal cord injury as well as mechanisms underlying effects of MSCs. However, due to numerous limitations, there is little information on selection of appropriate sources of MSCs for transplantation in clinical applications. Therefore, in this study we compared various properties of human umbilical cord-derived MSCs (HUCMSCs) with human placenta-derived MSCs (HPDMSCs), including cell proliferation, apoptosis, cellular morphology, ultrastructure, and their ability to secrete various growth factors (i.e. vascular endothelial growth factor, insulin-like growth factors-1, and hepatocyte growth factor), which will allow us to select appropriate MSC sources for cellular therapy. Cell culture, flow cytometry, transmission electron microscope (TEM) and atomic force microscope (AFM) were used for assessment of HUCMSCs and HPDMSCs. Results showed that the two types of cells appeared slightly different when they were observed under AFM. HUCMSCs appeared more fibroblast-like, whereas HPDMSCs appeared as large flat cells. HUCMSCs had higher proliferative rate and lower rate of apoptosis than HPDMSCs (p<0.05). However, HPDMSCs secreted more of the three growth factors than HUCMSCs (p<0.05). Results of TEM revealed that the two types of MSCs underwent active metabolism and had low degree of differentiation, especially HUCMSCs. Results of AFM showed that HUCMSCs had stronger ability of mass transport and cell migration than HPDMSCs. However, HPDMSCs displayed stronger adhesive properties than HUCMSCs. Our findings indicate that different sources of MSCs have different properties, and that care should be taken when choosing the appropriate sources of MSCs for stem cell transplantation.
Collapse
|
7
|
Zhang Y, Jiang C. PROG BIOCHEM BIOPHYS 2012; 39:1066-1072. [DOI: 10.3724/sp.j.1206.2012.00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
A Glimpse of Stem Cell Research in China. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Zeng-Yi CHANG. Science China Life Sciences in 2010: a New Name Marking a New Start. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|