1
|
Bei X, Shahid MQ, Wu J, Chen Z, Wang L, Liu X. Re-sequencing and transcriptome analysis reveal rich DNA variations and differential expressions of fertility-related genes in neo-tetraploid rice. PLoS One 2019; 14:e0214953. [PMID: 30951558 PMCID: PMC6450637 DOI: 10.1371/journal.pone.0214953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/22/2019] [Indexed: 01/04/2023] Open
Abstract
Autotetraploid rice is a useful germplasm for polyploid rice breeding, however, low seed setting is the major barrier in commercial utilization of autotetraploid rice. Our research group has developed neo-tetraploid rice lines, which have the characteristics of high fertility and heterosis when crossed with autotetraploid rice. In the present study, re-sequencing and RNA-seq were employed to detect global DNA variations and differentially expressed genes (DEGs) during meiosis stage in three neo-tetraploid rice lines compared to their parents, respectively. Here, a total of 4109881 SNPs and 640592 InDels were detected in neo-tetraploid lines compared to the reference genome, and 1805 specific presence/absence variations (PAVs) were detected in three lines. Approximately 12% and 0.5% of the total SNPs and InDels identified in three lines were located in genic regions, respectively. A total of 28 genes, harboring at least one of the large-effect SNP and/or InDel which affect the integrity of the encoded protein, were identified in the three lines. Together, 324 specific mutation genes, including 52 meiosis-related genes and 8 epigenetics-related genes were detected in neo-tetraploid rice compared to their parents. Of these 324 genes, five meiosis-related and three epigenetics-related genes displayed differential expressions during meiosis stage. Notably, 498 specific transcripts, 48 differentially expressed transposons and 245 differentially expressed ncRNAs were also detected in neo-tetraploid rice. Our results suggested that genomic structural reprogramming, DNA variations and differential expressions of some important meiosis and epigenetics related genes might be associated with high fertility in neo-tetraploid rice.
Collapse
Affiliation(s)
- Xuejun Bei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinwen Wu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhixiong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lan Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
2
|
Cheng SF, Qin XS, Han ZL, Sun XF, Feng YN, Yang F, Ge W, Li L, Zhao Y, De Felici M, Zou SH, Zhou Y, Shen W. Nicotine exposure impairs germ cell development in human fetal ovaries cultured in vitro. Aging (Albany NY) 2018; 10:1556-1574. [PMID: 30001218 PMCID: PMC6075447 DOI: 10.18632/aging.101492] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
Abstract
In the present paper, we found that human fetal ovaries (at ~16 weeks) express the transcripts for several subunits of the nicotinic acetylcholine receptor (nAChR). Exposure to the drug in vitro resulted in the marked increase of apoptosis in the ovaries in a time and dose-dependent manner. Evidence that adverse nicotine effects are potentially due to an increased level of reactive oxygen species (ROS) and consequent DNA damage, both in the ovarian somatic cells and germ cells, are reported. After 4 days of culture, exposure to 1 mM and 10 mM nicotine caused a 50% and 75% decrease, respectively, in the number of oogonia/oocytes present in the fetal ovaries. These results represent the first indication that nicotine may directly cause apoptosis in cells of the fetal human ovary and may lead to a reduction of the ovarian reserve oocytes and consequent precocious menopause in mothers smoking during pregnancy.
Collapse
Affiliation(s)
- Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Equal contribution
| | - Xun-Si Qin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Equal contribution
| | - Ze-Li Han
- The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100039, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Ni Feng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fan Yang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yong Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Shu-Hua Zou
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Yi Zhou
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| |
Collapse
|
3
|
Zhang Y, Jiang C. PROG BIOCHEM BIOPHYS 2012; 39:1066-1072. [DOI: 10.3724/sp.j.1206.2012.00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Zeng-Yi CHANG. Science China Life Sciences in 2010: a New Name Marking a New Start. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Animal reproduction and physiology: from basis to application. SCIENCE CHINA-LIFE SCIENCES 2010; 53:399-400. [DOI: 10.1007/s11427-010-0091-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|