1
|
An Alternative Method for Long-Term Culture of Chicken Embryonic Stem Cell In Vitro. Stem Cells Int 2018; 2018:2157451. [PMID: 29861740 PMCID: PMC5971340 DOI: 10.1155/2018/2157451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022] Open
Abstract
Chicken embryonic stem cells (cESCs) obtained from stage X embryos provide a novel model for the study of avian embryonic development. A new way to maintain cESCs for a long period in vitro still remains unexplored. We found that the cESCs showed stem cell-like properties in vitro for a long term with the support of DF-1 feeder and basic culture medium supplemented with human basic fibroblast growth factor (hbFGF), mouse stem cell factor (mSCF), and human leukemia inhibitory factor (hLIF). During the long culture period, the cESCs showed typical ES cell morphology and expressed primitive stem cell markers with a relatively stable proliferation rate and high telomerase activity. These cells also exhibited the capability to differentiate into cardiac myocytes, smooth muscle cells, neural cells, osteoblast, and adipocyte in vitro. Chimera chickens were produced by cESCs cultured for 25 passages with this new culture system. The experiments showed that DF-1 was the optimal feeder and hbFGF was an important factor for maintaining the pluripotency of cESCs in vitro.
Collapse
|
2
|
Farzaneh M, Attari F, Mozdziak PE, Khoshnam SE. The evolution of chicken stem cell culture methods. Br Poult Sci 2017; 58:681-686. [PMID: 28840744 DOI: 10.1080/00071668.2017.1365354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.
Collapse
Affiliation(s)
- M Farzaneh
- a Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR , Tehran , Iran
| | - F Attari
- b Department of Animal Biology, School of Biology, College of Science , University of Tehran , Tehran , Iran
| | - P E Mozdziak
- c Physiology Graduate Program , North Carolina State University , Raleigh , NC , USA
| | - S E Khoshnam
- d Department of Physiology, Faculty of Medicine, Physiology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran.,e Student Research Committee , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
3
|
Zhou R, Li Z, He C, Li R, Xia H, Li C, Xiao J, Chen ZY. Human umbilical cord mesenchymal stem cells and derived hepatocyte-like cells exhibit similar therapeutic effects on an acute liver failure mouse model. PLoS One 2014; 9:e104392. [PMID: 25101638 PMCID: PMC4125182 DOI: 10.1371/journal.pone.0104392] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/08/2014] [Indexed: 01/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have exhibited therapeutic effects in multiple animal models so that are promising liver substitute for transplantation treatment of end-stage liver diseases. However, it has been shown that over-manipulation of these cells increased their tumorigenic potential, and that reducing the in vitro culture time could minimize the risk. In this study, we used a D-galactosamine plus lipopolysaccharide (Gal/LPS)-induced acute liver failure mouse model, which caused death of about 50% of the mice with necrosis of more than 50% hepatocytes, to compare the therapeutic effects of human umbilical cord MSCs (hUCMSCs) before and after induction of differentiation into hepatocyte (i-Heps). Induction of hUCMSCs to become i-Heps was achieved by treatment of the cells with a group of growth factors within 4 weeks. The resulted i-Heps exhibited a panel of human hepatocyte biomarkers including cytokeratin (hCK-18), α-fetoprotein (hAFP), albumin (hALB), and hepatocyte-specific functions glycogen storage and urea metabolism. We demonstrated that transplantation of both cell types through tail vein injection rescued almost all of the Gal/LPS-intoxicated mice. Although both cell types exhibited similar ability in homing at the mouse livers, the populations of the hUCMSCs-derived cells, as judged by expressing hAFP, hCK-18 and human hepatocyte growth factor (hHGF), were small. These observations let us to conclude that the hUCMSCs was as effective as the i-Heps in treatment of the mouse acute liver failure, and that the therapeutic effects of hUCMSCs were mediated largely via stimulation of host hepatocyte regeneration, and that delivery of the cells through intravenous injection was effective.
Collapse
Affiliation(s)
- Ruiping Zhou
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Stomatology, Shenzhen Seventh (Yantian District) People’s Hospital, Shenzhen, China
| | - Zhuokun Li
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengyi He
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ronglin Li
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongbin Xia
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunyang Li
- Department of Stomatology, The 5 Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jia Xiao
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
- * E-mail: (JX); (ZYC)
| | - Zhi-Ying Chen
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- * E-mail: (JX); (ZYC)
| |
Collapse
|
4
|
Four recombinant pluripotency transcriptional factors containing a protein transduction domain maintained the in vitro pluripotency of chicken embryonic stem cells. SCIENCE CHINA-LIFE SCIENCES 2013; 56:40-50. [DOI: 10.1007/s11427-012-4426-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
5
|
A Glimpse of Stem Cell Research in China. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Zeng-Yi CHANG. Science China Life Sciences in 2010: a New Name Marking a New Start. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|