1
|
Cai W, Liang XF, Yuan X, Li A, He Y, He S. Genomic organization and expression of insulin receptors in grass carp, Ctenopharyngodon idellus. Comp Biochem Physiol B Biochem Mol Biol 2016; 194-195:51-7. [PMID: 26772721 DOI: 10.1016/j.cbpb.2015.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/29/2023]
Abstract
Insulin receptors have been demonstrated to be involved in embryogenesis, food intake regulation and glucose metabolism in several fish, while more researchis needed for further understanding. In this study, the complete coding sequence (CDS) of insulin receptor a (insra) gene and insulin receptor b (insrb) gene in grass carp were obtained, the CDS were 4068 bp and 4514 bp in length, encoding 1355 aa protein and 1351 aa protein. Both of insra and insrb in grass carp showed high amino acid identities with other fish. Insra and insrb genes were widely expressed in all tested tissues with an overlapping but distinct expressions. The high levels of insra mRNA were distributed in hindgut and heart tissues. The insrb gene showed the highest expression levels in liver and hindgut. We also proved that two forms of grass carp insulin receptors participate in the regulation of blood glucose and might act differently. Phylogenetic analysis confirmed that different isoforms of fish insulin receptors are derived from two distinct genes, which was inconsistent with the generation of mammalian insulin receptors. Synteny analyses of insulin receptor genes showed that genes surrounding the insulin receptor genes were conserved in fish. Arhgef18, PEX11G, humanC19orf45 genes were highly conserved among mammal species. However, no conserved synteny was observed among fish, mammals, avians and amphibians.
Collapse
Affiliation(s)
- Wenjing Cai
- College of Fisheries of Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Xu-fang Liang
- College of Fisheries of Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China.
| | - Xiaochen Yuan
- College of Fisheries of Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Aixuan Li
- College of Fisheries of Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Yuhui He
- College of Fisheries of Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Shan He
- College of Fisheries of Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
CHANG ZY. Science China Life Sciences in 2011: a Retrospect. PROG BIOCHEM BIOPHYS 2013. [DOI: 10.3724/sp.j.1206.2012.00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|