1
|
Shkryl VM. Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons. Biomolecules 2024; 14:1617. [PMID: 39766324 PMCID: PMC11727531 DOI: 10.3390/biom14121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in cellular homeostasis, regulating calcium levels and coordinating protein synthesis and folding. In neurons, the ER forms interconnected sheets and tubules that facilitate the propagation of calcium-based signals. Calcium plays a central role in the modulation and regulation of numerous functions in excitable cells. It is a versatile signaling molecule that influences neurotransmitter release, muscle contraction, gene expression, and cell survival. This review focuses on the intricate dynamics of calcium signaling in hippocampal neurons, with particular emphasis on the activation of voltage-gated and ionotropic glutamate receptors in the plasma membrane and ryanodine and inositol 1,4,5-trisphosphate receptors in the ER. These channels and receptors are involved in the generation and transmission of electrical signals and the modulation of calcium concentrations within the neuronal network. By analyzing calcium fluctuations in neurons and the associated calcium handling mechanisms at the ER, mitochondria, endo-lysosome and cytosol, we can gain a deeper understanding of the mechanistic pathways underlying neuronal interactions and information transfer.
Collapse
Affiliation(s)
- Vyacheslav M Shkryl
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, 01024 Kyiv, Ukraine
| |
Collapse
|
2
|
Fujii T, Shimizu T, Katoh M, Nagamori S, Koizumi K, Fukuoka J, Tabuchi Y, Sawaguchi A, Okumura T, Shibuya K, Fujii T, Takeshima H, Sakai H. Survival of detached cancer cells is regulated by movement of intracellular Na +,K +-ATPase. iScience 2021; 24:102412. [PMID: 33997694 PMCID: PMC8099779 DOI: 10.1016/j.isci.2021.102412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Beginning of metastasis, cancer cells detach from the primary tumor and they can survive even under loss of anchorage; however, the detachment-elicited mechanisms have remained unknown. Here, we found that Na+,K+-ATPase α3-isoform (α3NaK) in human cancer cells is dynamically translocated from intracellular vesicles to the plasma membrane when the attached cells are detached and that this mechanism contributes to the survival of the detached (floating) cancer cells. α3NaK was detected in the plasma membrane of floating cancer cells in peritoneal fluids of patients, while it was in the cytoplasm of the cells in primary tumor tissues. On cancer cell detachment, we also found the focal-adhesion-kinase-dependent Ca2+ response that induces the α3NaK translocation via nicotinic acid adenine dinucleotide phosphate pathway. Activation of AMP-activated protein kinase was associated with the translocated α3NaK in the plasma membrane. Collectively, our study identifies a unique mechanism for survival of detached cancer cells, opening up new opportunities for development of cancer medicines. Na+,K+-ATPase α3-isoform (α3NaK) is localized in cytoplasm of attached cancer cells Intracellular α3NaK is moved to plasma membrane (PM) upon the cell detachment FAK and NAADP-dependent Ca2+ response is involved in the translocation of α3NaK Activation of AMPK associated with the PM-α3NaK contributes to the cell survival
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mizuki Katoh
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Keiichi Koizumi
- Laboratory of Drug Discovery and Development for Pre-disease, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Junya Fukuoka
- Laboratory of Pathology, Toyama University Hospital, Toyama 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Akira Sawaguchi
- Department of Anatomy, Ultrastructural Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kazuto Shibuya
- Department of Surgery and Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
3
|
Navarro-Serna S, Hachem A, Canha-Gouveia A, Hanbashi A, Garrappa G, Lopes JS, París-Oller E, Sarrías-Gil L, Flores-Flores C, Bassett A, Sánchez R, Bermejo-Álvarez P, Matás C, Romar R, Parrington J, Gadea J. Generation of Nonmosaic, Two-Pore Channel 2 Biallelic Knockout Pigs in One Generation by CRISPR-Cas9 Microinjection Before Oocyte Insemination. CRISPR J 2021; 4:132-146. [PMID: 33616447 DOI: 10.1089/crispr.2020.0078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies of knockout (KO) mice with defects in the endolysosomal two-pore channels (TPCs) have shown TPCs to be involved in pathophysiological processes, including heart and muscle function, metabolism, immunity, cancer, and viral infection. With the objective of studying TPC2's pathophysiological roles for the first time in a large, more humanlike animal model, TPC2 KO pigs were produced using CRISPR-Cas9. A major problem using CRISPR-Cas9 to edit embryos is mosaicism; thus, we studied for the first time the effect of microinjection timing on mosaicism. Mosaicism was greatly reduced when in vitro produced embryos were microinjected before insemination, and surgical embryo transfer (ET) was performed using such embryos. All TPC2 KO fetuses and piglets born following ET (i.e., F0 generation) were nonmosaic biallelic KOs. The generation of nonmosaic animals greatly facilitates germ line transmission of the mutation, thereby aiding the rapid and efficient generation of KO animal lines for medical research and agriculture.
Collapse
Affiliation(s)
- Sergio Navarro-Serna
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Alaa Hachem
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Anatomy, College of Veterinary Medicine, University of Al Qadisiyah, Al Diwaniyah, Iraq
| | - Analuce Canha-Gouveia
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Ali Hanbashi
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Gabriela Garrappa
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Jordana S Lopes
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Evelyne París-Oller
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Lucía Sarrías-Gil
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Cesar Flores-Flores
- Molecular Biology Section, Scientific and Technical Research Area (ACTI), University of Murcia, Murcia, Spain
| | - Andrew Bassett
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Raul Sánchez
- Department of Animal Reproduction, INIA, Madrid, Spain
| | | | - Carmen Matás
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
4
|
Chen OCW, Colaco A, Davis LC, Kiskin FN, Farhat NY, Speak AO, Smith DA, Morris L, Eden E, Tynan P, Churchill GC, Galione A, Porter FD, Platt FM. Defective platelet function in Niemann-Pick disease type C1. JIMD Rep 2020; 56:46-57. [PMID: 33204596 PMCID: PMC7653256 DOI: 10.1002/jmd2.12148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/30/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mutations in either NPC1 (95% of cases) or NPC2. Reduced late endosome/lysosome calcium (Ca2+) levels and the accumulation of unesterified cholesterol and sphingolipids within the late endocytic system characterize this disease. We previously reported impaired lysosome-related organelle (LRO) function in Npc1 -/- Natural Killer cells; however, the potential contribution of impaired acid compartment Ca2+ flux and LRO function in other cell types has not been determined. Here, we investigated LRO function in NPC1 disease platelets. We found elevated numbers of circulating platelets, impaired platelet aggregation and prolonged bleeding times in a murine model of NPC1 disease. Electron microscopy revealed abnormal ultrastructure in murine platelets, consistent with that seen in a U18666A (pharmacological inhibitor of NPC1) treated megakaryocyte cell line (MEG-01) exhibiting lipid storage and acidic compartment Ca2+ flux defects. Furthermore, platelets from NPC1 patients across different ages were found to cluster at the lower end of the normal range when platelet numbers were measured and had platelet volumes that were clustered at the top of the normal range. Taken together, these findings highlight the role of acid compartment Ca2+ flux in the function of platelet LROs.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Y. Farhat
- Division in Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human ServicesBethesdaMarylandUSA
| | | | | | - Lauren Morris
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Emily Eden
- Institute of Ophthalmology—Cell BiologyUniversity College LondonLondonUK
| | | | | | | | - Forbes D. Porter
- Division in Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human ServicesBethesdaMarylandUSA
| | | |
Collapse
|
5
|
Lakpa KL, Halcrow PW, Chen X, Geiger JD. Readily Releasable Stores of Calcium in Neuronal Endolysosomes: Physiological and Pathophysiological Relevance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:681-697. [PMID: 31646530 PMCID: PMC7047846 DOI: 10.1007/978-3-030-12457-1_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurons are long-lived post-mitotic cells that possess an elaborate system of endosomes and lysosomes (endolysosomes) for protein quality control. Relatively recently, endolysosomes were recognized to contain high concentrations (400-600 μM) of readily releasable calcium. The release of calcium from this acidic organelle store contributes to calcium-dependent processes of fundamental physiological importance to neurons including neurotransmitter release, membrane excitability, neurite outgrowth, synaptic remodeling, and cell viability. Pathologically, disturbances of endolysosome structure and/or function have been noted in a variety of neurodegenerative disorders including Alzheimer's disease (AD) and HIV-1 associated neurocognitive disorder (HAND). And, dysregulation of intracellular calcium has been implicated in the neuropathogenesis of these same neurological disorders. Thus, it is important to better understand mechanisms by which calcium is released from endolysosomes as well as the consequences of such release to inter-organellar signaling, physiological functions of neurons, and possible pathological consequences. In doing so, a path forward towards new therapeutic modalities might be facilitated.
Collapse
Affiliation(s)
- Koffi L Lakpa
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Peter W Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA.
| |
Collapse
|
6
|
Khan N, Haughey NJ, Nath A, Geiger JD. Involvement of organelles and inter-organellar signaling in the pathogenesis of HIV-1 associated neurocognitive disorder and Alzheimer's disease. Brain Res 2019; 1722:146389. [PMID: 31425679 DOI: 10.1016/j.brainres.2019.146389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022]
Abstract
Endolysosomes, mitochondria, peroxisomes, endoplasmic reticulum, and plasma membranes are now known to physically and functionally interact with each other. Such findings of inter-organellar signaling and communication has led to a resurgent interest in cell biology and an increased appreciation for the physiological actions and pathological consequences of the dynamic physical and chemical communications occurring between intracellular organelles. Others and we have shown that HIV-1 proteins implicated in the pathogenesis of neuroHIV and that Alzheimer's disease both affects the structure and function of intracellular organelles. Intracellular organelles are highly mobile, and their intracellular distribution almost certainly affects their ability to interact with other organelles and to regulate such important physiological functions as endolysosome acidification, cell motility, and nutrient homeostasis. Indeed, compounds that acidify endolysosomes cause endolysosomes to exhibit a mainly perinuclear pattern while compounds that de-acidify endolysosomes cause these organelles to exhibit a larger profile as well as movement towards plasma membranes. Endolysosome pH might be an early event in the pathogenesis of neuroHIV and Alzheimer's disease and in terms of organellar biology endolysosome changes might be upstream of HIV-1 protein-induced changes to other organelles. Thus, inter-organellar signaling mechanisms might be involved in the pathogenesis of neuroHIV and other neurological disorders, and a better understanding of inter-organellar signaling might lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, United States
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Avindra Nath
- National Institute of Neurological Diseases and Stroke, Bethesda, MD, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, United States.
| |
Collapse
|
7
|
Vasilev F, Limatola N, Chun JT, Santella L. Contributions of suboolemmal acidic vesicles and microvilli to the intracellular Ca 2+ increase in the sea urchin eggs at fertilization. Int J Biol Sci 2019; 15:757-775. [PMID: 30906208 PMCID: PMC6429021 DOI: 10.7150/ijbs.28461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/15/2018] [Indexed: 12/03/2022] Open
Abstract
The onset of fertilization in echinoderms is characterized by instantaneous increase of Ca2+ in the egg cortex, which is called 'cortical flash', and the subsequent Ca2+ wave. While the cortical flash is due to the ion influx through L-type Ca2+ channels in starfish eggs, its amplitude was shown to be affected by the integrity of the egg cortex. Here, we investigated the contribution of cortical granules (CG) and yolk granules (YG) to the sperm-induced Ca2+ signals in sea urchin eggs. To this end, prior to fertilization, Paracentrotus lividus eggs were treated with agents that disrupt or relocate CG beneath the plasma membrane: namely, glycyl-L-phenylalanine 2-naphthylamide (GPN), procaine, urethane, and NH4Cl. All these pretreatments consistently suppressed the cortical flash in the fertilized eggs, and accelerated the decay kinetics of the subsiding Ca2+ wave in most cases. By contrast, centrifugation of the eggs, which stratifies organelles but not the CG, did not exhibit such changes except that the CF was much enhanced in the centrifugal pole where YG are localized. Surprisingly, we noted that pretreatment of the eggs with these CG-disrupting agents or with the inhibitors of L-type Ca2+ channels all drastically reduced the density of the microvilli and their individual shapes on the egg surface. Taken together, our results suggest that the integrity of the egg cortex ensures successful generation of the Ca2+ responses at fertilization, and that modulation of microvilli shape and density may serve as a mechanism of controlling ion flux across the plasma membrane.
Collapse
Affiliation(s)
- F Vasilev
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - N Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - J T Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - L Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
8
|
Brailoiu GC, Brailoiu E. Modulation of Calcium Entry by the Endo-lysosomal System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:423-47. [PMID: 27161239 DOI: 10.1007/978-3-319-26974-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endo-lysosomes are acidic organelles that besides the role in macromolecules degradation, act as intracellular Ca(2+) stores. Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+)-mobilizing second messenger, produced in response to agonist stimulation, activates Ca(2+)-releasing channels on endo-lysosomes and modulates a variety of cellular functions. NAADP-evoked signals are amplified by Ca(2+) release from endoplasmic reticulum, via the recruitment of inositol 1,4,5-trisphosphate and/or ryanodine receptors through a Ca(2+)-induced Ca(2+)- release (CICR) mechanism. The endo-lysosomal Ca(2+) channels activated by NAADP were recently identified as the two-pore channels (TPCs). In addition to TPCs, endo-lysosomes express another distinct family of Ca(2+)- permeable channels, namely the transient receptor potential mucolipin (TRPML) channels, functionally distinct from TPCs. TPCs belong to the voltage-gated channels, resembling voltage-gated Na(+) and Ca(2+) channels. TPCs have important roles in vesicular fusion and trafficking, in triggering a global Ca(2+) signal and in modulation of the membrane excitability. Depletion of acidic Ca(2+) stores has been shown to activate store-operated Ca(2+) entry in human platelets and mouse pancreatic β-cells. In human platelets, Ca(2+) influx in response to acidic stores depletion is facilitated by the tubulin-cytoskeleton and occurs through non-selective cation channels and transient receptor potential canonical (TRPC) channels. Emerging evidence indicates that activation of intracellular receptors, situated on endo-lysosomes, elicits canonical and non-canonical signaling mechanisms that involve CICR and activation of non-selective cation channels in plasma membrane. The ability of endo-lysosomal Ca(2+) stores to modulate the Ca(2+) release from other organelles and the Ca(2+) entry increases the diversity and complexity of cellular signaling mechanisms.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut St, Rm 916, Philadelphia, PA, 19107, USA.
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, 3500 N. Broad Street, Room 848, Philadelphia, PA, 19140, USA
| |
Collapse
|
9
|
Hui L, Geiger NH, Bloor-Young D, Churchill GC, Geiger JD, Chen X. Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: Evidence for acidic store-operated calcium entry in neurons. Cell Calcium 2015; 58:617-27. [PMID: 26475051 DOI: 10.1016/j.ceca.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 01/22/2023]
Abstract
Neurons possess an elaborate system of endolysosomes. Recently, endolysosomes were found to have readily releasable stores of intracellular calcium; however, relatively little is known about how such 'acidic calcium stores' affect calcium signaling in neurons. Here we demonstrated in primary cultured neurons that calcium released from acidic calcium stores triggered calcium influx across the plasma membrane, a phenomenon we have termed "acidic store-operated calcium entry (aSOCE)". aSOCE was functionally distinct from store-operated calcium release and calcium entry involving endoplasmic reticulum. aSOCE appeared to be governed by N-type calcium channels (NTCCs) because aSOCE was attenuated significantly by selectively blocking NTCCs or by siRNA knockdown of NTCCs. Furthermore, we demonstrated that NTCCs co-immunoprecipitated with the lysosome associated membrane protein 1 (LAMP1), and that aSOCE is accompanied by increased cell-surface expression levels of NTCC and LAMP1 proteins. Moreover, we demonstrated that siRNA knockdown of LAMP1 or Rab27a, both of which are key proteins involved in lysosome exocytosis, attenuated significantly aSOCE. Taken together our data suggest that aSOCE occurs in neurons, that aSOCE plays an important role in regulating the levels and actions of intraneuronal calcium, and that aSOCE is regulated at least in part by exocytotic insertion of N-type calcium channels into plasma membranes through LAMP1-dependent lysosome exocytosis.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nicholas H Geiger
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Duncan Bloor-Young
- Department of Pharmacology, University of Oxford, Mansfield Rd., Oxford OX1 3QT, UK
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Rd., Oxford OX1 3QT, UK
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
10
|
Lear PV, González-Touceda D, Porteiro Couto B, Viaño P, Guymer V, Remzova E, Tunn R, Chalasani A, García-Caballero T, Hargreaves IP, Tynan PW, Christian HC, Nogueiras R, Parrington J, Diéguez C. Absence of intracellular ion channels TPC1 and TPC2 leads to mature-onset obesity in male mice, due to impaired lipid availability for thermogenesis in brown adipose tissue. Endocrinology 2015; 156:975-86. [PMID: 25545384 PMCID: PMC4330317 DOI: 10.1210/en.2014-1766] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Intracellular calcium-permeable channels have been implicated in thermogenic function of murine brown and brite/beige adipocytes, respectively transient receptor potential melastin-8 and transient receptor potential vanilloid-4. Because the endo-lysosomal two-pore channels (TPCs) have also been ascribed with metabolic functionality, we studied the effect of simultaneously knocking out TPC1 and TPC2 on body composition and energy balance in male mice fed a chow diet. Compared with wild-type mice, TPC1 and TPC2 double knockout (Tpcn1/2(-/-)) animals had a higher respiratory quotient and became obese between 6 and 9 months of age. Although food intake was unaltered, interscapular brown adipose tissue (BAT) maximal temperature and lean-mass adjusted oxygen consumption were lower in Tpcn1/2(-/-) than in wild type mice. Phosphorylated hormone-sensitive lipase expression, lipid density and expression of β-adrenergic receptors were also lower in Tpcn1/2(-/-) BAT, whereas mitochondrial respiratory chain function and uncoupling protein-1 expression remained intact. We conclude that Tpcn1/2(-/-) mice show mature-onset obesity due to reduced lipid availability and use, and a defect in β-adrenergic receptor signaling, leading to impaired thermogenic activity, in BAT.
Collapse
Affiliation(s)
- Pamela V. Lear
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | - Patricia Viaño
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Vanessa Guymer
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Elena Remzova
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Ruth Tunn
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Annapurna Chalasani
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Tomás García-Caballero
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Iain P. Hargreaves
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Patricia W. Tynan
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Helen C. Christian
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | - Rubén Nogueiras
- Department of Physiology (P.V.L., D.G.-T., B.P.C., R.N., C.D.), Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela and Institute of Health Sciences, and Department of Morphological Sciences (P.V., T.G.-C.), School of Medicine and University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology (P.V.L., R.T., P.W.T., J.P.), Oxford University, Oxford OX1 3QT, United Kingdom; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (D.G.-T., B.P.C., R.N., C.D.), 15706, Santiago de Compostela, Spain; Department of Physiology, Anatomy, and Genetics (V.G., H.C.C.), Oxford University, Oxford OX1 3QX, United Kingdom; and Neurometabolic Unit (E.R., A.C., I.P.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, United Kingdom
| | | | | |
Collapse
|
11
|
Ronco V, Potenza DM, Denti F, Vullo S, Gagliano G, Tognolina M, Guerra G, Pinton P, Genazzani AA, Mapelli L, Lim D, Moccia F. A novel Ca²⁺-mediated cross-talk between endoplasmic reticulum and acidic organelles: implications for NAADP-dependent Ca²⁺ signalling. Cell Calcium 2015; 57:89-100. [PMID: 25655285 DOI: 10.1016/j.ceca.2015.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/01/2015] [Indexed: 12/31/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) serves as the ideal trigger of spatio-temporally complex intracellular Ca(2+) signals. However, the identity of the intracellular Ca(2+) store(s) recruited by NAADP, which may include either the endolysosomal (EL) or the endoplasmic reticulum (ER) Ca(2+) pools, is still elusive. Here, we show that the Ca(2+) response to NAADP was suppressed by interfering with either EL or ER Ca(2+) sequestration. The measurement of EL and ER Ca(2+) levels by using selectively targeted aequorin unveiled that the preventing ER Ca(2+) storage also affected ER Ca(2+) loading and vice versa. This indicates that a functional Ca(2+)-mediated cross-talk exists at the EL-ER interface and exerts profound implications for the study of NAADP-induced Ca(2+) signals. Extreme caution is warranted when dissecting NAADP targets by pharmacologically inhibiting EL and/or the ER Ca(2+) pools. Moreover, Ca(2+) transfer between these compartments might be essential to regulate vital Ca(2+)-dependent processes in both organelles.
Collapse
Affiliation(s)
- Virginia Ronco
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Duilio Michele Potenza
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Federico Denti
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Sabrina Vullo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Gagliano
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marialuisa Tognolina
- Laboratory of Neurophysiology, Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, ItalyfCentro Fermi, 00184 Roma, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Lisa Mapelli
- Laboratory of Neurophysiology, Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy; Centro Fermi, 00184 Roma, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
12
|
Prinz WA. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. ACTA ACUST UNITED AC 2014; 205:759-69. [PMID: 24958771 PMCID: PMC4068136 DOI: 10.1083/jcb.201401126] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regions of close apposition between two organelles, often referred to as membrane contact sites (MCSs), mostly form between the endoplasmic reticulum and a second organelle, although contacts between mitochondria and other organelles have also begun to be characterized. Although these contact sites have been noted since cells first began to be visualized with electron microscopy, the functions of most of these domains long remained unclear. The last few years have witnessed a dramatic increase in our understanding of MCSs, revealing the critical roles they play in intracellular signaling, metabolism, the trafficking of metabolites, and organelle inheritance, division, and transport.
Collapse
Affiliation(s)
- William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
13
|
Parrington J, Tunn R. Ca(2+) signals, NAADP and two-pore channels: role in cellular differentiation. Acta Physiol (Oxf) 2014; 211:285-96. [PMID: 24702694 DOI: 10.1111/apha.12298] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/13/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Ca(2+) signals regulate a wide range of physiological processes. Intracellular Ca(2+) stores can be mobilized in response to extracellular stimuli via a range of signal transduction mechanisms, often involving recruitment of diffusible second messenger molecules. The Ca(2+) -mobilizing messengers InsP3 and cADPR release Ca(2+) from the endoplasmic reticulum via the InsP3 and ryanodine receptors, respectively, while a third messenger, NAADP, releases Ca(2+) from acidic endosomes and lysosomes. Bidirectional communication between the endoplasmic reticulum (ER) and acidic organelles may have functional relevance for endolysosomal function as well as for the generation of Ca(2+) signals. The two-pore channels (TPCs) are currently strong candidates for being key components of NAADP-regulated Ca(2+) channels. Ca(2+) signals have been shown to play important roles in differentiation; however, much remains to be established about the exact signalling mechanisms involved. The investigation of the role of NAADP and TPCs in differentiation is still at an early stage, but recent studies have suggested that they are important mediators of differentiation of neurones, skeletal muscle cells and osteoclasts. NAADP signals and TPCs have also been implicated in autophagy, an important process in differentiation. Further studies will be required to identify the precise mechanism of TPC action and their link with NAADP signalling, as well as relating this to their roles in differentiation and other key processes in the cell and organism.
Collapse
Affiliation(s)
- J. Parrington
- Department of Pharmacology; University of Oxford; Oxford UK
| | - R. Tunn
- Department of Pharmacology; University of Oxford; Oxford UK
| |
Collapse
|
14
|
Arndt L, Castonguay J, Arlt E, Meyer D, Hassan S, Borth H, Zierler S, Wennemuth G, Breit A, Biel M, Wahl-Schott C, Gudermann T, Klugbauer N, Boekhoff I. NAADP and the two-pore channel protein 1 participate in the acrosome reaction in mammalian spermatozoa. Mol Biol Cell 2014; 25:948-64. [PMID: 24451262 PMCID: PMC3952862 DOI: 10.1091/mbc.e13-09-0523] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A TPCN1 gene–deficient mouse strain is used to show that two convergent working NAADP-dependent pathways with nonoverlapping activation and self-inactivation profiles for distinct NAADP concentrations drive acrosomal exocytosis, by which TPC1 is central for the pathway activated by low-micromolar NAADP concentrations. The functional relationship between the formation of hundreds of fusion pores during the acrosome reaction in spermatozoa and the mobilization of calcium from the acrosome has been determined only partially. Hence, the second messenger NAADP, promoting efflux of calcium from lysosome-like compartments and one of its potential molecular targets, the two-pore channel 1 (TPC1), were analyzed for its involvement in triggering the acrosome reaction using a TPCN1 gene–deficient mouse strain. The present study documents that TPC1 and NAADP-binding sites showed a colocalization at the acrosomal region and that treatment of spermatozoa with NAADP resulted in a loss of the acrosomal vesicle that showed typical properties described for TPCs: Registered responses were not detectable for its chemical analogue NADP and were blocked by the NAADP antagonist trans-Ned-19. In addition, two narrow bell-shaped dose-response curves were identified with maxima in either the nanomolar or low micromolar NAADP concentration range, where TPC1 was found to be responsible for activating the low affinity pathway. Our finding that two convergent NAADP-dependent pathways are operative in driving acrosomal exocytosis supports the concept that both NAADP-gated cascades match local NAADP concentrations with the efflux of acrosomal calcium, thereby ensuring complete fusion of the large acrosomal vesicle.
Collapse
Affiliation(s)
- Lilli Arndt
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians University, 81377 München, Germany Department of Pharmacy, Ludwig-Maximilians University, 81377 München, Germany Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University, 79104 Freiburg, Germany Institute for Anatomy, University of Duisburg-Essen, 45141 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lam AK, Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2542-59. [DOI: 10.1016/j.bbamcr.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
16
|
Aley PK, Singh N, Brailoiu GC, Brailoiu E, Churchill GC. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger in muscarinic receptor-induced contraction of guinea pig trachea. J Biol Chem 2013; 288:10986-93. [PMID: 23467410 DOI: 10.1074/jbc.m113.458620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is increasingly being demonstrated to be involved in calcium signaling in many cell types and species. Although it has been shown to play a role in smooth muscle cell contraction in several tissues, nothing is known about its possible role in tracheal smooth muscle, a muscle type that is clinically relevant to asthma. To determine whether NAADP functions as a second messenger in tracheal smooth muscle contraction, we used the criteria set out by Sutherland for a molecule to be designated a second messenger. We report that NAADP satisfies all five criteria as follows. First, the NAADP antagonist Ned-19 inhibited contractions in tracheal rings and calcium increases in isolated smooth muscle cells induced by the muscarinic agonist carbachol. Second, NAADP increased cytosolic calcium in isolated cells when microinjected and was blocked by Ned-19. Third, tracheal homogenates could synthesize NAADP by base exchange from exogenous NADP and nicotinic acid and metabolize exogenous NAADP to nicotinic acid adenine dinucleotide by a 2'-phosphatase. Fourth, carbachol induced a rapid and transient increase in endogenous NAADP levels. Fifth, tracheal homogenates contained NAADP-binding sites of high affinity. Taken together, these data demonstrate that NAADP functions as a second messenger in tracheal smooth muscle, and therefore, steps in the NAADP signaling pathway might provide possible new drug targets.
Collapse
Affiliation(s)
- Parvinder K Aley
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Zhang Y, Jiang C. PROG BIOCHEM BIOPHYS 2012; 39:1066-1072. [DOI: 10.3724/sp.j.1206.2012.00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Leng F. On Ca2+ signalling research. SCIENCE CHINA-LIFE SCIENCES 2012; 55:744-6. [DOI: 10.1007/s11427-012-4358-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/08/2012] [Indexed: 12/29/2022]
|
19
|
Lee HC. Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem 2012; 287:31633-40. [PMID: 22822066 DOI: 10.1074/jbc.r112.349464] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate were discovered >2 decades ago. That they are second messengers for mobilizing Ca(2+) stores has since been firmly established. Separate stores and distinct Ca(2+) channels are targeted, with cyclic ADP-ribose acting on the ryanodine receptors in the endoplasmic reticulum, whereas nicotinic acid adenine dinucleotide phosphate mobilizes the endolysosomes via the two-pore channels. Despite the structural and functional differences, both messengers are synthesized by a ubiquitous enzyme, CD38, whose crystal structure and catalytic mechanism have now been well elucidated. How this novel signaling enzyme is regulated remains largely unknown and is the focus of this minireview.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Walseth TF, Lin-Moshier Y, Weber K, Marchant JS, Slama JT, Guse AH. Nicotinic Acid Adenine Dinucleotide 2'-Phosphate (NAADP) Binding Proteins in T-Lymphocytes. ACTA ACUST UNITED AC 2012; 1:86-94. [PMID: 24829846 DOI: 10.1166/msr.2012.1008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Although several channels, including two-pore channels (TPC), ryanodine receptor (RYR) and mucolipin (TRP-ML1) have been implicated in NAADP regulation of calcium signaling, the NAADP receptor has not been identified. In this study, the photoaffinity probe, [32P]-5-azido-NAADP ([32P]-5-N3-NAADP), was used to study NAADP binding proteins in extracts from NAADP responsive Jurkat T-lymphocytes. [32P]-5-N3-NAADP photolabeling of Jurkat S100 cytosolic fractions resulted in the labeling of at least ten distinct proteins. Several of these S100 proteins, including a doublet at 22/23 kDa and small protein at 15 kDa displayed selectivity for NAADP as the labeling was protected by inclusion of unlabeled NAADP, whereas the structurally similar NADP required much higher concentrations for protection. Interestingly, the labeling of several S100 proteins (60, 45, 33 and 28 kDa) was stimulated by low concentrations of unlabeled NAADP, but not by NADP. The effect of NAADP on the labeling of the 60 kDa protein was biphasic, peaking at 100 nM with a five-fold increase and displaying no change at 1 µM NAADP. Several proteins were also photolabeled when the P100 membrane fraction from Jurkat cells was examined. Similar to the results with S100, a 22/23 kDa doublet and a 15 kDa protein appeared to be selectively labeled. NAADP did not increase the labeling of any P100 proteins as it did in the S100 fraction. The photolabeled S100 and P100 proteins were successfully resolved by two-dimensional gel electrophoresis. [32P]-5-N3-NAADP photolabeling and two-dimensional electrophoresis should represent a suitable strategy in which to identify and characterize NAADP binding proteins.
Collapse
Affiliation(s)
- Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yaping Lin-Moshier
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Karin Weber
- The Calcium Signalling Group, Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jonathan S Marchant
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - James T Slama
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH 43614, USA
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany ; Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
21
|
Lin-Moshier Y, Walseth TF, Churamani D, Davidson SM, Slama JT, Hooper R, Brailoiu E, Patel S, Marchant JS. Photoaffinity labeling of nicotinic acid adenine dinucleotide phosphate (NAADP) targets in mammalian cells. J Biol Chem 2011; 287:2296-307. [PMID: 22117075 DOI: 10.1074/jbc.m111.305813] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an agonist-generated second messenger that releases Ca(2+) from intracellular acidic Ca(2+) stores. Recent evidence has identified the two-pore channels (TPCs) within the endolysosomal system as NAADP-regulated Ca(2+) channels that release organellar Ca(2+) in response to NAADP. However, little is known about the mechanism coupling NAADP binding to calcium release. To identify the NAADP binding site, we employed a photoaffinity labeling method using a radioactive photoprobe based on 5-azido-NAADP ([(32)P-5N(3)]NAADP) that exhibits high affinity binding to NAADP receptors. In several systems that are widely used for studying NAADP-evoked Ca(2+) signaling, including sea urchin eggs, human cell lines (HEK293, SKBR3), and mouse pancreas, 5N(3)-NAADP selectively labeled low molecular weight sites that exhibited the diagnostic pharmacology of NAADP-sensitive Ca(2+) release. Surprisingly, we were unable to demonstrate labeling of endogenous, or overexpressed, TPCs. Furthermore, labeling of high affinity NAADP binding sites was preserved in pancreatic samples from TPC1 and TPC2 knock-out mice. These photolabeling data suggest that an accessory component within a larger TPC complex is responsible for binding NAADP that is unique from the core channel itself. This observation necessitates critical evaluation of current models of NAADP-triggered activation of the TPC family.
Collapse
Affiliation(s)
- Yaping Lin-Moshier
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ca2+: a versatile master key for intracellular signaling cascades. SCIENCE CHINA-LIFE SCIENCES 2011; 54:683-5. [DOI: 10.1007/s11427-011-4208-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|