1
|
Qi S, Wang Y, Liu Z, Wu S, Zhao Y, Li Y, Deng S, Yu K, Lian Z. Construction of a TAT-Cas9-EGFP Site-Specific Integration Eukaryotic Cell Line Using Efficient PEG10 Modification. Int J Mol Sci 2025; 26:1331. [PMID: 39941098 PMCID: PMC11818622 DOI: 10.3390/ijms26031331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
The CRISPR/Cas9 system enables precise and efficient modification of eukaryotic genomes. Among its various applications, homology-directed repair (HDR) mediated knock-in (KI) is crucial for creating human disease models, gene therapy, and agricultural genetic enhancements. Despite its potential, HDR-mediated knock-in efficiency remains relatively low. This study investigated the impact of 5' end PEG10 modification on site-specific integration of the target gene. The HEK293 cell line is considered a highly attractive expression system for the production of recombinant proteins, with the construction of site-specific integration cell lines at the AAVS1 locus enabling stable protein expression. This study investigated the impact of the 5' end PEG10 modification on the site-specific integration of the target gene at the AAVS1 locus in the 293T cell line. Utilizing this 5' end PEG10 modification resulted in a 1.9-fold increase in knock-in efficiency for a 1.8 kb target fragment, improving efficiency from 26% to 49%. An optimized system was utilized to successfully establish a high-expression, site-specific integration 293T cell line for TAT-Cas9-EGFP, providing a reliable resource of seed cells for subsequent protein production.
Collapse
Affiliation(s)
- Shiyu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Yibo Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Zhimei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Sujun Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Yan Li
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing 100071, China;
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC), Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| |
Collapse
|
2
|
Zare M, Mirhoseini SZ, Ghovvati S, Yakhkeshi S, Hesaraki M, Barati M, Sayyahpour FA, Baharvand H, Hassani SN. The constitutively active pSMAD2/3 relatively improves the proliferation of chicken primordial germ cells. Mol Reprod Dev 2023. [PMID: 37379342 DOI: 10.1002/mrd.23689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
In many multicellular organisms, mature gametes originate from primordial germ cells (PGCs). Improvements in the culture of PGCs are important not only for developmental biology research, but also for preserving endangered species, and for genome editing and transgenic animal technologies. SMAD2/3 appear to be powerful regulators of gene expression; however, their potential positive impact on the regulation of PGC proliferation has not been taken into consideration. Here, the effect of TGF-β signaling as the upstream activator of SMAD2/3 transcription factors was evaluated on chicken PGCs' proliferation. For this, chicken PGCs at stages 26-28 Hamburger-Hamilton were obtained from the embryonic gonadal regions and cultured on different feeders or feeder-free substrates. The results showed that TGF-β signaling agonists (IDE1 and Activin-A) improved PGC proliferation to some extent while treatment with SB431542, the antagonist of TGF-β, disrupted PGCs' proliferation. However, the transfection of PGCs with constitutively active SMAD2/3 (SMAD2/3CA) resulted in improved PGC proliferation for more than 5 weeks. The results confirmed the interactions between overexpressed SMAD2/3CA and pluripotency-associated genes NANOG, OCT4, and SOX2. According to the results, the application of SMAD2/3CA could represent a step toward achieving an efficient expansion of avian PGCs.
Collapse
Affiliation(s)
- Masumeh Zare
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | | | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojgan Barati
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayyahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Farzaneh M, Attari F, Mozdziak PE, Khoshnam SE. The evolution of chicken stem cell culture methods. Br Poult Sci 2017; 58:681-686. [PMID: 28840744 DOI: 10.1080/00071668.2017.1365354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.
Collapse
Affiliation(s)
- M Farzaneh
- a Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR , Tehran , Iran
| | - F Attari
- b Department of Animal Biology, School of Biology, College of Science , University of Tehran , Tehran , Iran
| | - P E Mozdziak
- c Physiology Graduate Program , North Carolina State University , Raleigh , NC , USA
| | - S E Khoshnam
- d Department of Physiology, Faculty of Medicine, Physiology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran.,e Student Research Committee , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
4
|
Farzaneh M, Hassani SN, Mozdziak P, Baharvand H. Avian embryos and related cell lines: A convenient platform for recombinant proteins and vaccine production. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/25/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Paul Mozdziak
- Graduate Physiology Program; Campus Box 7608/321 Scott Hall; Raleigh NC USA
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Department of Developmental Biology; University of Science and Culture; Tehran Iran
| |
Collapse
|
5
|
Abstract
Molecular medicine opens into a space of novel specific therapeutic agents: intracellularly active drugs such as peptides, proteins or nucleic acids, which are not able to cross cell membranes and enter the intracellular space on their own. Through the development of cell-targeted shuttles for specific delivery, this restriction in delivery has the potential to be converted into an advantage. On the one hand, due to the multiple extra- and intracellular barriers, such carrier systems need to be multifunctional. On the other hand, they must be precise and reproducibly manufactured due to pharmaceutical reasons. Here we review the design of precise sequence-defined delivery carriers, including solid-phase synthesized peptides and nonpeptidic oligomers, or nucleotide-based carriers such as aptamers and origami nanoboxes.
Collapse
|
6
|
Cell-permeant recombinant Nanog protein promotes pluripotency by inhibiting endodermal specification. Stem Cell Res 2014; 12:680-9. [DOI: 10.1016/j.scr.2014.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022] Open
|