1
|
Li S, Zhang MY, Yuan J, Zhang YX. Nano-vaccines for gene delivery against HIV-1 infection. Expert Rev Vaccines 2023; 22:315-326. [PMID: 36945780 DOI: 10.1080/14760584.2023.2193266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Over the last four decades, human immunodeficiency virus type 1 (HIV-1) infection has been a major public health concern. It is acknowledged that an effective vaccine remains the best hope for eliminating the HIV-1 pandemic. The prophylaxis of HIV-1 infection remains a central theme because of the absence of an available HIV-1 vaccine. The incapability of conventional delivery strategies to induce potent immunity is a crucial task to overcome and ultimately lead to a major obstacle in HIV-1 vaccine research. AREAS COVERED The literature search was conducted in the following databases: PubMed, Web of Science, and Embase. Nano-platforms based vaccines have proven prophylaxis of various diseases for effectively activating the immune system. Nano-vaccines, including non-viral and viral vectored nano-vaccines, are in a position to improve the effectiveness of HIV-1 antigen delivery and enhance the innate and adaptive immune responses against HIV-1. Compared to traditional vaccination strategies, genetic immunization can elicit a long-term immune response to provide protective immunity for HIV-1 prevention. EXPERT OPINION The research progress on nano-vaccines for gene delivery against HIV-1 was discussed. The vaccine strategies based on nano-platforms that are being applied to stimulate effective HIV-1-specific cellular and humoral immune responses were particularly emphasized.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jie Yuan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
2
|
Chen J, Xu W, Li L, Yi L, Jiang Y, Hao P, Xu Z, Zou W, Li P, Gao Z, Tian M, Jin N, Ren L, Li C. Immunogenicity and protective potential of chimeric virus-like particles containing SARS-CoV-2 spike and H5N1 matrix 1 proteins. Front Cell Infect Microbiol 2022; 12:967493. [PMID: 35923799 PMCID: PMC9339902 DOI: 10.3389/fcimb.2022.967493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has posed a constant threat to human beings and the world economy for more than two years. Vaccination is the first choice to control and prevent the pandemic. However, an effective SARS-CoV-2 vaccine against the virus infection is still needed. This study designed and prepared four kinds of virus-like particles (VLPs) using an insect expression system. Two constructs encoded wild-type SARS-CoV-2 spike (S) fused with or without H5N1 matrix 1 (M1) (S and SM). The other two constructs contained a codon-optimized spike gene and/or M1 gene (mS and mSM) based on protein expression, stability, and ADE avoidance. The results showed that the VLP-based vaccine could induce high SARS-CoV-2 specific antibodies in mice, including specific IgG, IgG1, and IgG2a. Moreover, the mSM group has the most robust ability to stimulate humoral immunity and cellular immunity than the other VLPs, suggesting the mSM is the best immunogen. Further studies showed that the mSM combined with Al/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges with mouse-adapted strain. The vaccine based on mSM and Al/CpG adjuvant is a promising candidate vaccine to prevent the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jing Chen
- College of Veterinary medicine, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lichao Yi
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhiqiang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wancheng Zou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peiheng Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyao Tian
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| |
Collapse
|
3
|
Xu W, Du S, Li T, Wu S, Jin N, Ren L, Li C. Generation and Evaluation of Recombinant Baculovirus Coexpressing GP5 and M Proteins of Porcine Reproductive and Respiratory Syndrome Virus Type 1. Viral Immunol 2021; 34:697-707. [PMID: 34935524 DOI: 10.1089/vim.2021.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen of the porcine reproductive and respiratory syndrome, which is one of the most economically devastating diseases of the swine industry. However, whether the inactivated vaccine and modified live attenuated vaccines are effective in disease control is still controversial. Although several groups developed PRRSV virus-like particles (VLPs) as a vaccine against PRRSV, all these VLP-based vaccines targeted PRRSV-2, but not PRRSV-1 or both. Therefore, it is urgent to produce VLPs against PRRSV-1. In this study, we rescued recombinant baculovirus expressing GP5 and M proteins of PRRSV-1 through the Bac-to-Bac® baculovirus expression system. Thereafter, PRRSV VLP was obtained efficiently in the recombinant baculovirus-infected High Five insect cells. Moreover, the PRRSV VLP and PRRSV VLP+A5 could efficiently trigger specific humoral immune responses and B cellular immune responses through intranasal immunization. The combination of PRRSV VLP and A5 adjuvant could improve the level of the immune response. The PRRSV-1 VLPs generated in this study have greater potential for vaccine development to control PRRSV-1 infection.
Collapse
Affiliation(s)
- Wang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Shouwen Du
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China.,Department of Infectious Diseases, Shenzhen People's Hospital, Second Clinical Hospital of Jinan University, Shenzhen, China
| | - Tiyuan Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Shipin Wu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Linzhu Ren
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
4
|
A Zigzag but Upward Way to Develop an HIV-1 Vaccine. Vaccines (Basel) 2020; 8:vaccines8030511. [PMID: 32911701 PMCID: PMC7564621 DOI: 10.3390/vaccines8030511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
After decades of its epidemic, the human immunodeficiency virus type 1 (HIV-1) is still rampant worldwide. An effective vaccine is considered to be the ultimate strategy to control and prevent the spread of HIV-1. To date, hundreds of clinical trials for HIV-1 vaccines have been tested. However, there is no HIV-1 vaccine available yet, mostly because the immune correlates of protection against HIV-1 infection are not fully understood. Currently, a variety of recombinant viruses-vectored HIV-1 vaccine candidates are extensively studied as promising strategies to elicit the appropriate immune response to control HIV-1 infection. In this review, we summarize the current findings on the immunological parameters to predict the protective efficacy of HIV-1 vaccines, and highlight the latest advances on HIV-1 vaccines based on viral vectors.
Collapse
|
5
|
He X, Wang W, Xu K, Feng X, Zeng Y. Evaluation of the efficacy of a therapeutic HIV vaccine by in vitro stimulation assay. Cell Immunol 2017; 313:67-71. [PMID: 28073435 DOI: 10.1016/j.cellimm.2017.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 11/27/2022]
Abstract
A novel method for HIV vaccine efficacy evaluation was established and the experimental conditions optimized. This novel method was then applied to determine whether a recombinant adenovirus type 5 HIV therapeutic vaccine expressing Gag antigen (Ad5-HIVgag) could stimulate HIV-specific cellular responses in vitro. The results indicated that HIV-specific IFN-gama production lymphocytes were induced by the Ad5-HIVgag vaccine. Compared with other methods, this in vitro stimulation method is safe and time-efficient, and the result is more intuitive. It has the potential to be regarded as a supplement to other methods for evaluating the IFN-gamma production by PBMCs to HIV vaccination.
Collapse
Affiliation(s)
- Xiaozhou He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Wandi Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Ke Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xia Feng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| | - Yi Zeng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| |
Collapse
|
6
|
Musich T, Robert-Guroff M. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Rev Vaccines 2016; 15:1015-27. [PMID: 26910195 DOI: 10.1586/14760584.2016.1158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prime/boost vaccination strategies for HIV/SIV vaccine development have been used since the early 1990s and have become an established method for eliciting cell and antibody mediated immunity. Here we focus on induction of protective antibodies, both broadly neutralizing and non-neutralizing, with the viral envelope being the key target antigen. Prime/boost approaches are complicated by the diversity of autologous and heterologous priming vectors, and by various forms of envelope booster immunogens, many still in development as structural studies aim to design stable constructs with exposure of critical epitopes for protective antibody elicitation. This review discusses individual vaccine components, reviews recent prime/boost strategies and their outcomes, and highlights complicating factors arising as greater knowledge concerning induction of adaptive, protective immunity is acquired.
Collapse
Affiliation(s)
- Thomas Musich
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
7
|
From lesions to viral clones: biological and molecular diversity amongst autochthonous Brazilian vaccinia virus. Viruses 2015; 7:1218-37. [PMID: 25785515 PMCID: PMC4379567 DOI: 10.3390/v7031218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 02/02/2023] Open
Abstract
Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment.
Collapse
|
8
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
9
|
Comparison of the replication characteristics of vaccinia virus strains Guang 9 and Tian Tan in vivo and in vitro. Arch Virol 2014; 159:2587-96. [PMID: 24838849 DOI: 10.1007/s00705-014-2079-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 03/31/2014] [Indexed: 01/26/2023]
Abstract
Vaccinia virus is widely used as a vector in the development of recombinant vaccines. Vaccinia virus strain Guang 9 (VG9), which was derived from vaccinia virus strain Tian Tan (VTT) by successive plaque-cloning purification, was more attenuated than VTT. In this study, the host cell range and the growth and replication of VG9 were compared with those of VTT. The results showed that both VG9 and VTT could infect permissive cells (Vero, TK-143 and CEF) and semipermissive cells PK (15) and induced a visible cytopathic effect (CPE). Both strains could infect nonpermissive CHO-K1 cells but neither was able to reproduce. The replicative ability of VG9 was a little lower than that of VTT. Additionally, recombinant vaccinia viruses containing a firefly luciferase gene (VG9-L and VTT-L) were constructed, and their expression in vitro and replication and spread in vivo were compared. The expression ability of VG9-L was lower than that of VTT-L. Whole-animal imaging data indicated that VG9-L could reproduce quickly and express the exogenous protein at the site of inoculation, regardless of whether the intramuscular, intracutaneous, subcutaneous or celiac inoculation route was used. VG9-L was better in its ability to express a foreign protein than VTT-L, but the time during which expression occurred was shorter. There was no dissemination of virus in mice inoculated with either strain. In summary, this study demonstrates the possibility of using VG9 for the production of smallpox vaccines or the construction of recombinant vaccinia virus vaccines.
Collapse
|