1
|
Chiarella E. Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression. Cell Tissue Res 2024; 398:161-173. [PMID: 39436449 PMCID: PMC11614986 DOI: 10.1007/s00441-024-03926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Hematopoietic stem cells (HSCs) drive cellular turnover in the hematopoietic system by balancing self-renewal and differentiation. In the adult bone marrow (BM), these cells are regulated by a complex cellular microenvironment known as "niche," which involves dynamic interactions between diverse cellular and non-cellular elements. During blood cell maturation, lineage branching is guided by clusters of genes that interact or counteract each other, forming complex networks of lineage-specific transcription factors. Disruptions in these networks can lead to obstacles in differentiation, lineage reprogramming, and ultimately malignant transformation, including acute myeloid leukemia (AML). Zinc Finger Protein 521 (Znf521/Zfp521), a conserved transcription factor enriched in HSCs in both human and murine hematopoiesis, plays a pivotal role in regulating HSC self-renewal and differentiation. Its enforced expression preserves progenitor cell activity, while inhibition promotes differentiation toward the lymphoid and myeloid lineages. Transcriptomic analysis of human AML patient samples has revealed upregulation of ZNF521 in AMLs with the t(9;11) fusion gene MLL-AF9. In vitro studies have shown that ZNF521 collaborates with MLL-AF9 to enhance the growth of transformed leukemic cells, increase colony formation, and activate MLL target genes. Conversely, inhibition of ZNF521 using short-hairpin RNA (shRNA) results in decreased leukemia proliferation, reduced colony formation, and induction of cell cycle arrest in MLL-rearranged AML cell lines. In vivo experiments have demonstrated that mZFP521-deficient mice transduced with MLL-AF9 experience a delay in leukemia development. This review provides an overview of the regulatory network involving ZNF521, which plays a crucial role in controlling both HSC self-renewal and differentiation pathways. Furthermore, we examine the impact of ZNF521 on the leukemic phenotype and consider it a potential marker for MLL-AF9+ AML.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Zhang J, Zheng H, Liang P. SENP7 inhibits glioblastoma metastasis and invasion by dissociating SUMO2/3 binding to specific target proteins. Open Med (Wars) 2024; 19:20241052. [PMID: 39381427 PMCID: PMC11459272 DOI: 10.1515/med-2024-1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Background The poor surgical efficacy and recurrence of glioblastoma (GBM) are due to its lack of visible infiltrative features. Our bioinformatics study suggests that low expression of small ubiquitin-like modifier (SUMO)-specific protease 7 (SENP7) indicates poor prognosis in GBM. Objectives This study investigated the effect of SENP7 expression on the invasion, migration, and proliferation of GBM cells and aims to identify the SUMO target proteins affected by SENP7. Methods SENP7 expression was analyzed in eight GBM tumor samples and four GBM cell lines, comparing them to normal brain tissue. The effect of SENP7 overexpression on GBM LN229 cell migration, invasion, and proliferation was examined through in vitro assays. Furthermore, four SUMO target proteins involved in tumor invasion and proliferation (CDK6, matrix metalloproteinase-9 [MMP9], AKT, and HIF-1α) were studied to explore SENP7's molecular mechanism. Results SENP7 expression was significantly lower in GBM tumors compared to normal tissue. SENP7 overexpression in LN229 cells inhibited migration and invasion without affecting proliferation. Overexpression reduced the levels of MMP9, AKT, and HIF-1α, but not CDK6. Immunohistochemical analysis showed decreased MMP9 and CD31 levels, suggesting reduced tumor invasion and angiogenesis. However, SENP7 overexpression did not affect tumor growth in vivo. Conclusions SENP7 inhibits GBM invasion by dissociating proteins associated with tumor invasion from SUMO2/3, providing a potential target for future GBM therapies.
Collapse
Affiliation(s)
- Jixing Zhang
- Harbin Medical University Cancer Hospital, Harbin, China
| | | | - Peng Liang
- Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Zheng J, Wang Y, Tao L, Cai J, Shen Z, Liu Y, Pan H, Li S, Ruan Y, Chen T, Ye Z, Lin K, Sun Y, Xu J, Liang X. Circ-RAPGEF5 promotes intrahepatic cholangiocarcinoma progression by stabilizing SAE1 to facilitate SUMOylation. J Exp Clin Cancer Res 2023; 42:239. [PMID: 37705041 PMCID: PMC10498551 DOI: 10.1186/s13046-023-02813-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with a poor prognosis. The underlying functions and mechanisms of circular RNA and SUMOylation in the development of ICC remain poorly understood. METHODS Circular RNA hsa_circ_0001681 (termed Circ-RAPGEF5 hereafter) was identified by circular RNA sequencing from 19 pairs of ICC and adjacent tissue samples. The biological function of Circ-RAPGEF5 in tumor proliferation and metastasis was examined by a series of in vitro assays. A preclinical model was used to validate the therapeutic effect of targeting Circ-RAPGEF5. RNA pull-down and dual-luciferase reporter assays were used to access the RNA interactions. Western blot and Co-IP assays were used to detect SUMOylation levels. RESULTS Circ-RAPGEF5, which is generated from exons 2 to 6 of the host gene RAPGEF5, was upregulated in ICC. In vitro and in vivo assays showed that Circ-RAPGEF5 promoted ICC tumor proliferation and metastasis, and inhibited apoptosis. Additionally, high Circ-RAPGEF5 expression was significantly correlated with a poor prognosis. Further investigation showed that SAE1, a potential target of Circ-RAPGEF5, was also associated with poor oncological outcomes. RNA pull-down and dual-luciferase reporter assays showed an interaction of miR-3185 with Circ-RAPGEF5 and SAE1. Co-IP and western blot assays showed that Circ-RAPGEF5 is capable of regulating SUMOylation. CONCLUSION Circ-RAPGEF5 promotes ICC tumor progression and SUMOylation by acting as a sponge for miR-3185 to stabilize SAE1. Targeting Circ-RAPGEF5 or SAE1 might be a novel diagnostic and therapeutic strategy in ICC.
Collapse
Affiliation(s)
- Junhao Zheng
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Liye Tao
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jingwei Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zefeng Shen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yang Liu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Haoyu Pan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Shihao Li
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Tianyi Chen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhengtao Ye
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Kainan Lin
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yin Sun
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Xiao Liang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
4
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 PMCID: PMC10324244 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui Province People’s Republic of China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
The role of plasma exosomal lnc-SNAPC5-3:4 in monitoring the efficacy of anlotinib in the treatment of advanced non-small cell lung cancer. J Cancer Res Clin Oncol 2022; 148:2867-2879. [DOI: 10.1007/s00432-022-04071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
|
6
|
Yang X, Gao M, Miao M, Jiang C, Zhang D, Yin Z, Ni Y, Chen J, Zhang J. Combining combretastatin A4 phosphate with ginsenoside Rd synergistically inhibited hepatocellular carcinoma by reducing HIF-1α via PI3K/AKT/mTOR signalling pathway. J Pharm Pharmacol 2021; 73:263-271. [PMID: 33793802 DOI: 10.1093/jpp/rgaa006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Combretastatin A4 phosphate (CA4P), a vascular disrupting agent (VDA), can cause rapid tumour vessel occlusion. Subsequently, extensive necrosis is discovered in the tumour center, which induces widespread hypoxia and the rise of the α subunit of hypoxia-inducible factor-1 (HIF-1α). The aim of this study was to evaluate the inhibition of hepatocellular carcinoma growth by combining CA4P with HIF-1 α inhibitor and investigate the mechanism of this combination. METHODS Ginsenoside Rd (Rd) was used in combination with CA4P to estimate the inhibition effect in HepG2 cells and HepG2 xenograft mouse model. The efficacy of anti-tumour was evaluated by tumour growth curve. The protein expression of HIF-1α and PI3K/AKT/mTOR signalling pathway were analysed by western blot. KEY FINDINGS Combination of CA4P and Rd inhibited HepG2 cell proliferation and induced apoptosis in vivo and in vitro. It also increased the necrotic area of the tumour and delayed the tumour growth. Moreover, Rd down-regulated HIF-1α protein expression by inhibiting PI3K/AKT/mTOR signalling pathway. CONCLUSIONS Combination of CA4P and Rd had synergistic anti-tumour effects. The mechanism may be related to the inhibition of HIF-1α by PI3K/AKT/mTOR signalling pathway. This strategy provides a new thought for the combinative therapy of VDAs.
Collapse
Affiliation(s)
- Xinxiu Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Mengqi Miao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, P.R. China
| | - Yicheng Ni
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Jing Chen
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
7
|
SUMO E3 ligase CBX4 regulates hTERT-mediated transcription of CDH1 and promotes breast cancer cell migration and invasion. Biochem J 2021; 477:3803-3818. [PMID: 32926159 DOI: 10.1042/bcj20200359] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
hTERT, the catalytic component of the human telomerase enzyme, is regulated by post-translational modifications, like phosphorylation and ubiquitination by multiple proteins which remarkably affects the overall activity of the enzyme. Here we report that hTERT gets SUMOylated by SUMO1 and polycomb protein CBX4 acts as the SUMO E3 ligase of hTERT. hTERT SUMOylation positively regulates its telomerase activity which can be inhibited by SENP3-mediated deSUMOylation. Interestingly, we have established a new role of hTERT SUMOylation in the repression of E-cadherin gene expression and consequent triggering on the epithelial-mesenchymal-transition (EMT) program in breast cancer cells. We also observed that catalytically active CBX4, leads to retention of hTERT/ZEB1 complex onto E-cadherin promoter leading to its repression through hTERT-SUMOylation. Further through wound healing and invasion assays in breast cancer cells, we showed the tumor promoting ability of hTERT was significantly compromised upon overexpression of SUMO-defective mutant of hTERT. Thus our findings establish a new post-translational modification of hTERT which on one hand is involved in telomerase activity maintenance and on the other hand plays a crucial role in the regulation of gene expression thereby promoting migration and invasion of breast cancer cells.
Collapse
|
8
|
Chen LJ, Xu W, Li YP, Ma LT, Zhang HF, Huang XB, Yu GG, Ma XQ, Chen C, Liu YH, Wu J, Wang LJ, Xu Y. Lycium barbarum Polysaccharide Inhibited Hypoxia-Inducible Factor 1 in COPD Patients. Int J Chron Obstruct Pulmon Dis 2020; 15:1997-2004. [PMID: 32921997 PMCID: PMC7455768 DOI: 10.2147/copd.s254172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/12/2020] [Indexed: 11/23/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease characterized by irreversible airflow obstruction. Pathogenic mechanisms underlying COPD remain largely unknown. Objective The current study was designed to explore serum concentration of hypoxia-inducible factor 1α (HIF-1α) in stable COPD patients and the potential effect of Lycium barbarum polysaccharides (LBP) on HIF-1α protein expression. Methods Serum HIF-1α was quantified by ELISA in 102 stable COPD patients before and after 2-week orally taken LBP (100 mL/time, twice daily, 5–15 mg/mL). Correlation of serum LBP and lung function (FEV1%) or blood gas (PO2 and PCO2) was also analyzed. As a control, 105 healthy subjects were also enrolled into this study. Results Serum concentration of HIF-1α was significantly higher in the stable COPD patients (37.34 ± 7.20 pg/mL) than that in the healthy subjects (29.55 ± 9.66 pg/mL, P<0.001). Oral administration of LBP (5 mg/mL, 100 mL, twice daily for 2 weeks) not only relieved COPD symptoms but also significantly reduced serum HIF-1α concentration (36.94 ± 9.23 vs 30.49 ± 6.42 pg/mL, P<0.05). In addition, level of serum HIF-1α concentration was significantly correlated with PCO2 (r = 0.283, P<0.001), but negatively and significantly correlated with PO2 (r = −0.490, P=0.005) or FEV1%(r = −0.420, P=0.018). Conclusion These findings suggested that activation of HIF-1 signaling pathway may be involved in the pathophysiology of COPD and that stabilization of serum HIF-1α concentration by LBP might benefit the stable COPD patients.
Collapse
Affiliation(s)
- Li-Jun Chen
- Department of Respiratory and Critical Medicine, The First People's Hospital of Yinchuan City, Yinchuan, Ningxia, People's Republic of China.,Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Wang Xu
- Department of Respiratory and Critical Medicine, The First People's Hospital of Yinchuan City, Yinchuan, Ningxia, People's Republic of China
| | - Ya-Ping Li
- Department of Respiratory Medicine, Weihai Municipal Hospital of Shandong Province, Weihai, Shandong, People's Republic of China
| | - Li-Ting Ma
- Department of Respiratory and Critical Medicine, The First People's Hospital of Yinchuan City, Yinchuan, Ningxia, People's Republic of China
| | - Hui-Fang Zhang
- Department of Respiratory and Critical Medicine, The First People's Hospital of Yinchuan City, Yinchuan, Ningxia, People's Republic of China
| | - Xiao-Bo Huang
- Department of Respiratory and Critical Medicine, The First People's Hospital of Yinchuan City, Yinchuan, Ningxia, People's Republic of China
| | - Geng-Geng Yu
- Department of Respiratory and Critical Medicine, The First People's Hospital of Yinchuan City, Yinchuan, Ningxia, People's Republic of China
| | - Xiu-Qin Ma
- Department of Respiratory and Critical Medicine, The First People's Hospital of Yinchuan City, Yinchuan, Ningxia, People's Republic of China
| | - Chao Chen
- Department of Respiratory and Critical Medicine, The First People's Hospital of Yinchuan City, Yinchuan, Ningxia, People's Republic of China
| | - Yan-Hong Liu
- Department of Respiratory and Critical Medicine, The First People's Hospital of Yinchuan City, Yinchuan, Ningxia, People's Republic of China
| | - Jie Wu
- Department of Clinical Institute, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Li-Jun Wang
- Department of Clinical Institute, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yuan Xu
- Department of Clinical Institute, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
9
|
Hu C, Hui K, Jiang X. Effects of microRNA regulation on antiangiogenic therapy resistance in non-small cell lung cancer. Biomed Pharmacother 2020; 131:110557. [PMID: 32836072 DOI: 10.1016/j.biopha.2020.110557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
Antiangiogenic drugs have become a standard therapeutic regimen for advanced non-small cell lung cancer (NSCLC); however, many issues remain to be solved. Identifying specific markers to predict patient response to antiangiogenic drugs to ensure therapeutic efficacy would increase their clinical benefit. MicroRNAs (miRNAs) are involved in the process of resistance to antiangiogenic therapy, as they regulate various key signaling pathways. Therefore, miRNAs may be used as targets for reversing tumor resistance to antiangiogenic therapy. This article reviews the molecular mechanisms of antiangiogenic therapy resistance and the specific mechanisms of miRNA regulation of resistance. Signal transducer and activator of transcription 3 (STAT3) is one of multiple target genes of miRNAs, and is closely related to antiangiogenic research. Thus, it is described separately in this review article.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China
| | - Kaiyuan Hui
- Department of Oncology, Lianyungang Clinical Medical College of Nanjing Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China.
| | - Xiaodong Jiang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China; Department of Oncology, Lianyungang Clinical Medical College of Nanjing Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China.
| |
Collapse
|
10
|
Hirota K. Basic Biology of Hypoxic Responses Mediated by the Transcription Factor HIFs and its Implication for Medicine. Biomedicines 2020; 8:biomedicines8020032. [PMID: 32069878 PMCID: PMC7168341 DOI: 10.3390/biomedicines8020032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Oxygen (O2) is essential for human life. Molecular oxygen is vital for the production of adenosine triphosphate (ATP) in human cells. O2 deficiency leads to a reduction in the energy levels that are required to maintain biological functions. O2 acts as the final acceptor of electrons during oxidative phosphorylation, a series of ATP synthesis reactions that occur in conjunction with the electron transport system in mitochondria. Persistent O2 deficiency may cause death due to malfunctioning biological processes. The above account summarizes the classic view of oxygen. However, this classic view has been reviewed over the last two decades. Although O2 is essential for life, higher organisms such as mammals are unable to biosynthesize molecular O2 in the body. Because the multiple organs of higher organisms are constantly exposed to the risk of “O2 deficiency,” living organisms have evolved elaborate strategies to respond to hypoxia. In this review, I will describe the system that governs oxygen homeostasis in the living body from the point-of-view of the transcription factor hypoxia-inducible factor (HIF).
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
11
|
Pyo J, Ryu J, Kim W, Choi JS, Jeong JW, Kim JE. The Protein Phosphatase PPM1G Destabilizes HIF-1α Expression. Int J Mol Sci 2018; 19:ijms19082297. [PMID: 30081604 PMCID: PMC6121667 DOI: 10.3390/ijms19082297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are key regulators of hypoxic responses, and their stability and transcriptional activity are controlled by several kinases. However, the regulation of HIF by protein phosphatases has not been thoroughly investigated. Here, we found that overexpression of Mg2+/Mn2+-dependent protein phosphatase 1 gamma (PPM1G), one of Ser/Thr protein phosphatases, downregulated protein expression of ectopic HIF-1α under normoxic or acute hypoxic conditions. In addition, the deficiency of PPM1G upregulated protein expression of endogenous HIF-1α under normoxic or acute oxidative stress conditions. PPM1G decreased expression of HIF-1α via the proteasomal pathway. PPM1G-mediated HIF-1α degradation was dependent on prolyl hydroxylase (PHD), but independent of von Hippel-Lindau (VHL). These data suggest that PPM1G is critical for the control of HIF-1α-dependent responses.
Collapse
Affiliation(s)
- Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Wootae Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Jae-Sun Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Anatomy and Neurobiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
12
|
Toson ESA, Shiha GE, Abdelgaleel AE. Fibrogenic/Angiogenic Linker for Non-Invasive Assessment of Hepatic Fibrosis Staging in Chronic Hepatitis C Among Egyptian Patients. Ann Hepatol 2017; 16:862-873. [PMID: 29055924 DOI: 10.5604/01.3001.0010.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Background and rationale for the study. Liver biopsy is the golden standard for staging liver fibrosis, but it may be accompanied by complications. Because of this complication, the aim of this study is to evaluate a simple noninvasive score to assess hepatic fibrosis in chronic hepatitis C genotype 4 patients which is very may have an important in diagnosis and therapeutic decision. This score [HA vascular (HAV) score] is a combination of direct markers [hyaluronic acid (HA) and vascular endothelial growth factor (VEGF)] and indirect markers [aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio (AAR)]. RESULTS Samples were collected from 220 patients (F0-F4): an estimated group (n = 120) and a validated group (n = 100). HA and VEGF levels, HCV RNA, liver function tests, platelet counts were assayed, Fibroscan was done and liver biopsy was taken and the stage of liver fibrosis and the grade of inflammatory activity was calculated according to Metavir score system. HA vascular (HAV) score = -35.1 + 0.14 (HA) (ng/L) + 0.03 (VEGF) (pg/mL) + (-6.7) [AAR (AST/ALT ratio)]. The HAV score produced areas under curve of 0.979 and 0.994 for significant (F2-F4) and advanced fibrosis (F3-F4) (cut off = 0.583 and 6.3, respectively). Surprisingly, the validation study of this score gave very good values of AUCs i.e. 0.990, 0.996 and 0.995 for significant, advanced and liver cirrhosis. CONCLUSIONS Our developed score can not only help to assess liver fibrosis staging effectively but also avoid the invasiveness and the limitations of liver biopsy in Egyptian hepatitis C virus patients.
Collapse
Affiliation(s)
- El-Shahat A Toson
- Chemistry Department (Biochemistry Division), Faculty of Science, Damietta University, Damietta, Egypt
| | - Gamal E Shiha
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Asmaa E Abdelgaleel
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
13
|
Luo Y, You S, Wang J, Fan S, Shi J, Peng A, Yu T. Association between Sumoylation-Related Gene rs77447679 Polymorphism and Risk of Gastric Cancer (GC) in a Chinese Population. J Cancer 2017; 8:3226-3231. [PMID: 29158794 PMCID: PMC5665038 DOI: 10.7150/jca.20587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Purpose: Sumoylation plays a critical role in gene regulation and tumorigenesis, and is hypothesized to correlate with the development of various cancers. So far, there has been no reported association between sumoylation-related genes and the risk of gastric cancer (GC). Methods: A total of 17 tagging single-nucleotide polymorphisms (tag-SNPs) in 5 sumoylation-related genes were selected and genotyped by SNaPshot in a case-control study, including 1021 GC patients and 1304 controls. Odds ratio (OR) and 95% confidential interval (CI) were computed to evaluate the genetic association of the onset of GC. Results: We demonstrated that CBX4 rs77447679 polymorphism was significantly associated with GC risk (P= 0.017; adjusted OR: 1.71; 95% CI: 1.10-2.66). The patients with CC genotype had a lower risk of GC (CC vs. CA+AA, P= 0.017; adjusted OR: 1.24; 95% CI: 1.04-1.49). Conclusion: This study revealed that CBX4 rs77447679 polymorphism was positively associated with GC, and individuals with CC genotype had less risk of GC. The risky effects and functional effect of this polymorphism in GC require further investigation.
Collapse
Affiliation(s)
- Ying Luo
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sihong You
- Department of gastroenterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.,Department of Developmental Genetics, Nanjing Medical University, Nanjing 211166, China
| | - Jirong Wang
- Department of Developmental Genetics, Nanjing Medical University, Nanjing 211166, China.,Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Shuling Fan
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Shi
- Nanjing Red Cross Blood Center, Nanjing 210003, China
| | - Ai Peng
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tingting Yu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
14
|
Xiong Z, Guo M, Yu Y, Zhang FF, Ge MK, Chen GQ, Shen SM. Downregulation of AIF by HIF-1 contributes to hypoxia-induced epithelial–mesenchymal transition of colon cancer. Carcinogenesis 2016; 37:1079-1088. [DOI: 10.1093/carcin/bgw089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
15
|
Zhou ZH, Wang B, Cheng XB, Zhang XE, Tang J, Tang WJ, Gu L. Roles of SHARP1 in thyroid cancer. Mol Med Rep 2016; 13:5365-71. [PMID: 27121679 DOI: 10.3892/mmr.2016.5185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 04/01/2016] [Indexed: 11/06/2022] Open
Abstract
SHARP1 is a basic helix‑loop‑helix transcription factor involved in various cellular processes, including proliferation and differentiation. The present study assessed the role of SHARP1 in the progression and invasion of thyroid cancer. PCR and western blot analysis demonstrated that in thyroid cancer tissues, SHARP1 was significantly downregulated at the mRNA and protein level compared with that in normal tissues. Furthermore, SHARP1 was downregulated in the TT and TPC‑1 thyroid cancer cell lines compared with a normal thyroid cell line, while it was upregulated in other thyroid cancer cell lines. Overexpression of SHARP1 in TT and TPC‑1 cells significantly inhibited the cell viability, migration and invasion in vitro. Furthermore, the protein and mRNA levels of HIF‑1α were found to be decreased in TT and TPC‑1 cells following forced overexpression of SHARP1. In addition, silencing of HIF‑1α reduced the viability, migration and invasion of TT and TPC-1 cells. In conclusion, the present study indicated that SHARP1 acts as a tumor suppressor in thyroid cancer and that its downregulation may contribute to the proliferation, migration and invasion of thyroid cancer cells through mechanisms possibly involving HIF‑1α, suggesting that SHARP1 may be an important therapeutic target for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Zun-Hai Zhou
- Department of Endocrinology, Yangpu Hospital, Shanghai Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Bo Wang
- Department of Endocrinology, Yangpu Hospital, Shanghai Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Xiao-Bing Cheng
- Department of Endocrinology, Yangpu Hospital, Shanghai Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Xuan-E Zhang
- Department of Endocrinology, Yangpu Hospital, Shanghai Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Jian Tang
- Department of Endocrinology, Yangpu Hospital, Shanghai Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Wen-Jia Tang
- Department of Endocrinology, Yangpu Hospital, Shanghai Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Lei Gu
- Department of Endocrinology, Yangpu Hospital, Shanghai Tongji University School of Medicine, Shanghai 200090, P.R. China
| |
Collapse
|
16
|
Li Y, Yin J, Li T, Huang S, Yan H, Leavenworth J, Wang X. NK cell-based cancer immunotherapy: from basic biology to clinical application. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1233-45. [DOI: 10.1007/s11427-015-4970-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022]
|
17
|
Jiao HK, Xu Y, Li J, Wang W, Mei Z, Long XD, Chen GQ. Prognostic significance of Cbx4 expression and its beneficial effect for transarterial chemoembolization in hepatocellular carcinoma. Cell Death Dis 2015; 6:e1689. [PMID: 25766328 PMCID: PMC4385935 DOI: 10.1038/cddis.2015.57] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 01/27/2023]
Abstract
Our recent investigations showed that polycomb chromobox 4 (Cbx4) promotes angiogenesis and metastasis of hepatocellular carcinoma (HCC) through its sumoylating action on hypoxia-inducible factor-1α protein. Here, we attempt to identify the prognostic significances of Cbx4 by a retrospective analyses in 727 cases of HCC patients with and without postoperative transarterial chemoembolization (TACE) or transarterial embolization (TAE). Binary logistic regression tests indicated that Cbx4 is correlated with histological grading, tumor-node-metastasis stage, microvessel density, distant metastasis and hematogenous metastasis of HCC. By univariate and multivariate analyses, we show that Cbx4 is an independent prognostic factor of HCC, and both TAE and TACE treatments have no effects on the overall survival in HCC patients with low Cbx4 expression. More intriguingly, TACE prolongs, while TAE shortens, the overall survival of HCC patients with high Cbx4 expression, indicating that Cbx4 is a good biomarker on decision-making to perform postoperative TACE in HCC patients. Moreover, Cbx4 overexpression enhances while Cbx4 silencing antagonizes doxorubicin-induced cell death of HCC cell lines. In conclusion, Cbx4 is an independent prognostic factor for HCC patients, and the patients with high Cbx4 expression should receive postoperative TACE treatment to improve their survival.
Collapse
Affiliation(s)
- H-K Jiao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences/Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Y Xu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences/Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - J Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - W Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Z Mei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - X-D Long
- Department of Liver Surgery, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
- Department of Pathology, Youjiang Medical College for Nationalities, Baise 533000, Guang-Xi, China
| | - G-Q Chen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences/Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
18
|
Li P, Liu Y, Wang H, He Y, Wang X, He Y, Lv F, Chen H, Pang X, Liu M, Shi T, Yi Z. PubAngioGen: a database and knowledge for angiogenesis and related diseases. Nucleic Acids Res 2014; 43:D963-7. [PMID: 25392416 PMCID: PMC4383947 DOI: 10.1093/nar/gku1139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Angiogenesis is the process of generating new blood vessels based on existing ones, which is involved in many diseases including cancers, cardiovascular diseases and diabetes mellitus. Recently, great efforts have been made to explore the mechanisms of angiogenesis in various diseases and many angiogenic factors have been discovered as therapeutic targets in anti- or pro-angiogenic drug development. However, the resulted information is sparsely distributed and no systematical summarization has been made. In order to integrate these related results and facilitate the researches for the community, we conducted manual text-mining from published literature and built a database named as PubAngioGen (http://www.megabionet.org/aspd/). Our online application displays a comprehensive network for exploring the connection between angiogenesis and diseases at multilevels including protein–protein interaction, drug-target, disease-gene and signaling pathways among various cells and animal models recorded through text-mining. To enlarge the scope of the PubAngioGen application, our database also links to other common resources including STRING, DrugBank and OMIM databases, which will facilitate understanding the underlying molecular mechanisms of angiogenesis and drug development in clinical therapy.
Collapse
Affiliation(s)
- Peng Li
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yongrui Liu
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Huan Wang
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yuan He
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xue Wang
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yundong He
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fang Lv
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Huaqing Chen
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiufeng Pang
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Tieliu Shi
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhengfang Yi
- The center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|