1
|
FLI1 and PKC co-activation promote highly efficient differentiation of human embryonic stem cells into endothelial-like cells. Cell Death Dis 2018; 9:131. [PMID: 29374149 PMCID: PMC5833666 DOI: 10.1038/s41419-017-0162-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
Rationale-endothelial cells (ECs) play important roles in various regeneration processes and can be used in a variety of therapeutic applications, such as cardiac regeneration, gene therapy, tissue-engineered vascular grafts and prevascularized tissue transplants. ECs can be acquired from pluripotent and adult stem cells. To acquire ECs from human embryonic stem cells (hESCs) in a fast, efficient and economic manner. We established a conditional overexpression system in hESCs based on 15 transcription factors reported to be responsible for hematopoiesis lineage. Among them, only overexpression of FLI1 could induce hESCs to a hematopoietic lineage. Moreover, simultaneous overexpression of FLI1 and activation of PKC rapidly and efficiently induced differentiation of hESCs into induced endothelial cells (iECs) within 3 days, while neither FLI1 overexpression nor PKC activation alone could derive iECs from hESCs. During induction, hESCs differentiated into spindle-like cells that were consistent in appearance with ECs. Flow cytometric analysis revealed that 92.2-98.9% and 87.2-92.6% of these cells were CD31+ and CD144+, respectively. Expression of vascular-specific genes dramatically increased, while the expression of pluripotency genes gradually decreased during induction. iECs incorporated acetylated low-density lipoproteins, strongly expressed vWF and bound UEA-1. iECs also formed capillary-like structures both in vitro and in vivo. RNA-seq analysis verified that these cells closely resembled their in vivo counterparts. Our results showed that co-activation of FLI1 and PKC could induce differentiation of hESCs into iECs in a fast, efficient and economic manner.
Collapse
|
2
|
Cochrane A, Kelaini S, Tsifaki M, Bojdo J, Vilà-González M, Drehmer D, Caines R, Magee C, Eleftheriadou M, Hu Y, Grieve D, Stitt AW, Zeng L, Xu Q, Margariti A. Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis. Stem Cells 2017; 35:952-966. [PMID: 28207177 PMCID: PMC5396345 DOI: 10.1002/stem.2594] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 12/28/2022]
Abstract
The capability to derive endothelial cell (ECs) from induced pluripotent stem cells (iPSCs) holds huge therapeutic potential for cardiovascular disease. This study elucidates the precise role of the RNA‐binding protein Quaking isoform 5 (QKI‐5) during EC differentiation from both mouse and human iPSCs (hiPSCs) and dissects how RNA‐binding proteins can improve differentiation efficiency toward cell therapy for important vascular diseases. iPSCs represent an attractive cellular approach for regenerative medicine today as they can be used to generate patient‐specific therapeutic cells toward autologous cell therapy. In this study, using the model of iPSCs differentiation toward ECs, the QKI‐5 was found to be an important regulator of STAT3 stabilization and vascular endothelial growth factor receptor 2 (VEGFR2) activation during the EC differentiation process. QKI‐5 was induced during EC differentiation, resulting in stabilization of STAT3 expression and modulation of VEGFR2 transcriptional activation as well as VEGF secretion through direct binding to the 3′ UTR of STAT3. Importantly, mouse iPS‐ECs overexpressing QKI‐5 significantly improved angiogenesis and neovascularization and blood flow recovery in experimental hind limb ischemia. Notably, hiPSCs overexpressing QKI‐5, induced angiogenesis on Matrigel plug assays in vivo only 7 days after subcutaneous injection in SCID mice. These results highlight a clear functional benefit of QKI‐5 in neovascularization, blood flow recovery, and angiogenesis. Thus, they provide support to the growing consensus that elucidation of the molecular mechanisms underlying EC differentiation will ultimately advance stem cell regenerative therapy and eventually make the treatment of cardiovascular disease a reality. The RNA binding protein QKI‐5 is induced during EC differentiation from iPSCs. RNA binding protein QKI‐5 was induced during EC differentiation in parallel with the EC marker CD144. Immunofluorescence staining showing that QKI‐5 is localized in the nucleus and stained in parallel with CD144 in differentiated ECs (scale bar = 50 µm). stemcells2017 Stem Cells2017;35:952–966
Collapse
Affiliation(s)
- Amy Cochrane
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Marianna Tsifaki
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - James Bojdo
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Marta Vilà-González
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Daiana Drehmer
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Rachel Caines
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Corey Magee
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Magdalini Eleftheriadou
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Yanhua Hu
- Cardiovascular Division, King's College London, London, United Kingdom
| | - David Grieve
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Alan W Stitt
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| |
Collapse
|
3
|
Laminin-guided highly efficient endothelial commitment from human pluripotent stem cells. Sci Rep 2016; 6:35680. [PMID: 27804979 PMCID: PMC5090224 DOI: 10.1038/srep35680] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Obtaining highly purified differentiated cells via directed differentiation from human pluripotent stem cells (hPSCs) is an essential step for their clinical application. Among the various conditions that should be optimized, the precise role and contribution of the extracellular matrix (ECM) during differentiation are relatively unclear. Here, using a short fragment of laminin 411 (LM411-E8), an ECM predominantly expressed in the vascular endothelial basement membrane, we demonstrate that the directed switching of defined ECMs robustly yields highly-purified (>95%) endothelial progenitor cells (PSC-EPCs) without cell sorting from hPSCs in an integrin-laminin axis-dependent manner. Single-cell RNA-seq analysis revealed that LM411-E8 resolved intercellular transcriptional heterogeneity and escorted the progenitor cells to the appropriate differentiation pathway. The PSC-EPCs gave rise to functional endothelial cells both in vivo and in vitro. We therefore propose that sequential switching of defined matrices is an important concept for guiding cells towards desired fate.
Collapse
|
4
|
Jin M, Wu Y, Wang Y, Yu D, Yang M, Yang F, Feng C, Chen T. MicroRNA-29a promotes smooth muscle cell differentiation from stem cells by targeting YY1. Stem Cell Res 2016; 17:277-284. [PMID: 27591939 DOI: 10.1016/j.scr.2016.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/22/2016] [Accepted: 07/30/2016] [Indexed: 11/16/2022] Open
Abstract
MicroRNA-29a (miR-29a) has been extensively studied in tumor biology and fibrotic diseases, but little is known about its functional roles in vascular smooth muscle cell (VSMC) differentiation from embryonic stem cells (ESCs). Using well-established VSMC differentiation models, we have observed that miR-29a induces VSMC differentiation from mouse ESCs by negatively regulating YY1, a transcription factor that inhibits muscle cell differentiation and muscle-specific gene expression. Moreover, gene expression levels of three VSMC specific transcriptional factors were up-regulated by miR-29a over-expression, but down-regulated by miR-29a inhibition or YY1 over-expression. Taken together, our data demonstrate that miR-29a and its target gene, YY1, play a regulatory role in VSMC differentiation from ESCs in vitro and in vivo.
Collapse
Affiliation(s)
- Min Jin
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang 310009, PR China
| | - Yutao Wu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yanwei Wang
- Department of Cardiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo 315000, PR China
| | - Danqing Yu
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang 310009, PR China
| | - Mei Yang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Feng Yang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Chun Feng
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang 310009, PR China
| | - Ting Chen
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
5
|
Tsolis KC, Bagli E, Kanaki K, Zografou S, Carpentier S, Bei ES, Christoforidis S, Zervakis M, Murphy C, Fotsis T, Economou A. Proteome Changes during Transition from Human Embryonic to Vascular Progenitor Cells. J Proteome Res 2016; 15:1995-2007. [DOI: 10.1021/acs.jproteome.6b00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Konstantinos C. Tsolis
- Department
of Protein structure and Proteomics Facility, Institute of Molecular Biology and Biotechnology - FORTH, 70013 Iraklio, Crete, Greece
- Department
of Biology, University of Crete, 70013 Iraklio, Crete, Greece
| | - Eleni Bagli
- Division
of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, 45110 Ioaninna, Greece
| | - Katerina Kanaki
- Department
of Protein structure and Proteomics Facility, Institute of Molecular Biology and Biotechnology - FORTH, 70013 Iraklio, Crete, Greece
| | - Sofia Zografou
- Division
of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, 45110 Ioaninna, Greece
| | - Sebastien Carpentier
- SYBIOMA, KU Leuven facility for Systems Biology Based Mass Spectrometry, B-3000 Leuven Belgium
| | - Ekaterini S. Bei
- School
of Electronic and Computer Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Savvas Christoforidis
- Division
of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, 45110 Ioaninna, Greece
- Laboratory
of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Michalis Zervakis
- School
of Electronic and Computer Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Carol Murphy
- Division
of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, 45110 Ioaninna, Greece
- School
of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Theodore Fotsis
- Division
of Biomedical Research, Institute of Molecular Biology and Biotechnology - FORTH, 45110 Ioaninna, Greece
- Laboratory
of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
- School
of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Anastassios Economou
- Department
of Protein structure and Proteomics Facility, Institute of Molecular Biology and Biotechnology - FORTH, 70013 Iraklio, Crete, Greece
- Department
of Biology, University of Crete, 70013 Iraklio, Crete, Greece
- SYBIOMA, KU Leuven facility for Systems Biology Based Mass Spectrometry, B-3000 Leuven Belgium
| |
Collapse
|
6
|
Kilian Y, Wehmeier UF, Wahl P, Mester J, Hilberg T, Sperlich B. Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children. Front Physiol 2016; 7:92. [PMID: 27014090 PMCID: PMC4789462 DOI: 10.3389/fphys.2016.00092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/26/2016] [Indexed: 01/10/2023] Open
Abstract
Aim: The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Methods:Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml·min−1·kg−1 peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90–95% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. Results: HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30′, 60′, 180′) and HVT (d3, 0′, 60′). Conclusion: Results of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.
Collapse
Affiliation(s)
- Yvonne Kilian
- Institute of Training Science and Sport Informatics, German Sport University CologneCologne, Germany; The German Research Centre of Elite Sport, German Sport University CologneCologne, Germany
| | - Udo F Wehmeier
- Department of Sports Medicine, University Wuppertal Wuppertal, Germany
| | - Patrick Wahl
- Institute of Training Science and Sport Informatics, German Sport University CologneCologne, Germany; The German Research Centre of Elite Sport, German Sport University CologneCologne, Germany; Departement of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University CologneCologne, Germany
| | - Joachim Mester
- Institute of Training Science and Sport Informatics, German Sport University CologneCologne, Germany; The German Research Centre of Elite Sport, German Sport University CologneCologne, Germany
| | - Thomas Hilberg
- Department of Sports Medicine, University Wuppertal Wuppertal, Germany
| | - Billy Sperlich
- Department of Sports Medicine, University Wuppertal Wuppertal, Germany
| |
Collapse
|
7
|
Clayton ZE, Sadeghipour S, Patel S. Generating induced pluripotent stem cell derived endothelial cells and induced endothelial cells for cardiovascular disease modelling and therapeutic angiogenesis. Int J Cardiol 2015; 197:116-22. [PMID: 26123569 DOI: 10.1016/j.ijcard.2015.06.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/23/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Abstract
Standard therapy for atherosclerotic coronary and peripheral arterial disease is insufficient in a significant number of patients because extensive disease often precludes effective revascularization. Stem cell therapy holds promise as a supplementary treatment for these patients, as pre-clinical and clinical research has shown transplanted cells can promote angiogenesis via direct and paracrine mechanisms. Induced pluripotent stem cells (iPSCs) are a novel cell type obtained by reprogramming somatic cells using exogenous transcription factor cocktails, which have been introduced to somatic cells via viral or plasmid constructs, modified mRNA or small molecules. IPSCs are now being used in disease modelling and drug testing and are undergoing their first clinical trial, but despite recent advances, the inefficiency of the reprogramming process remains a major limitation, as does the lack of consensus regarding the optimum transcription factor combination and delivery method and the uncertainty surrounding the genetic and epigenetic stability of iPSCs. IPSCs have been successfully differentiated into vascular endothelial cells (iPSC-ECs) and, more recently, induced endothelial cells (iECs) have also been generated by direct differentiation, which bypasses the pluripotent intermediate. IPSC-ECs and iECs demonstrate endothelial functionality in vitro and have been shown to promote neovessel growth and enhance blood flow recovery in animal models of myocardial infarction and peripheral arterial disease. Challenges remain in optimising the efficiency, safety and fidelity of the reprogramming and endothelial differentiation processes and establishing protocols for large-scale production of clinical-grade, patient-derived cells.
Collapse
Affiliation(s)
- Z E Clayton
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Australia.
| | - S Sadeghipour
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
| | - S Patel
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|