1
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Molecular Mechanisms of Calcium Signaling During Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:103-128. [PMID: 32399828 DOI: 10.1007/978-3-030-40406-2_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger involved in the regulation of numerous cellular functions including vesicular trafficking, cytoskeletal rearrangements and gene transcription. Both global as well as localized Ca2+ signals occur during phagocytosis, although their functional impact on the phagocytic process has been debated. After nearly 40 years of research, a consensus may now be reached that although not strictly required, Ca2+ signals render phagocytic ingestion and phagosome maturation more efficient, and their manipulation make an attractive avenue for therapeutic interventions. In the last decade many efforts have been made to identify the channels and regulators involved in generating and shaping phagocytic Ca2+ signals. While molecules involved in store-operated calcium entry (SOCE) of the STIM and ORAI family have taken center stage, members of the canonical, melastatin, mucolipin and vanilloid transient receptor potential (TRP), as well as purinergic P2X receptor families are now recognized to play significant roles. In this chapter, we review the recent literature on research that has linked specific Ca2+-permeable channels and regulators to phagocytic function. We highlight the fact that lipid mediators are emerging as important regulators of channel gating and that phagosomal ionic homeostasis and Ca2+ release also play essential parts. We predict that improved methodologies for measuring these factors will be critical for future advances in dissecting the intricate biology of this fascinating immune process.
Collapse
|
3
|
Qu C, Ding M, Zhu Y, Lu Y, Du J, Miller M, Tian J, Zhu J, Xu J, Wen M, Er-Bu AGA, Wang J, Xiao Y, Wu M, McManus OB, Li M, Wu J, Luo HR, Cao Z, Shen B, Wang H, Zhu MX, Hong X. Pyrazolopyrimidines as Potent Stimulators for Transient Receptor Potential Canonical 3/6/7 Channels. J Med Chem 2017; 60:4680-4692. [PMID: 28395140 PMCID: PMC5720685 DOI: 10.1021/acs.jmedchem.7b00304] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transient receptor potential canonical 3/6/7 (TRPC3/6/7) are highly homologous receptor-operated nonselective cation channels. Despite their physiological significance, very few selective and potent agonists are available for functional examination of these channels. Using a cell-based high throughput screening approach, a lead compound with the pyrazolopyrimidine skeleton was identified as a TRPC6 agonist. Synthetic schemes for the lead and its analogues were established, and structural-activity relationship studies were carried out. A series of potent and direct agonists of TRPC3/6/7 channels were identified, and among them, 4m-4p have a potency order of TRPC3 > C7 > C6, with 4n being the most potent with an EC50 of <20 nM on TRPC3. Importantly, these compounds exhibited no stimulatory activity on related TRP channels. The potent and selective compounds described here should be suitable for evaluation of the roles of TRPC channels in the physiology and pathogenesis of diseases, including glomerulosclerosis and cancer.
Collapse
Affiliation(s)
- Chunrong Qu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei Province 430071, China
| | - Mingmin Ding
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei Province 430071, China
| | - Yingmin Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Yungang Lu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Melissa Miller
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Jinmei Zhu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei Province 430071, China
| | - Jian Xu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
- The International Scientist Working Station of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Meng Wen
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei Province 430071, China
| | - AGA Er-Bu
- Medical College, Tibet University, Lasa, Tibet 850000, China
| | - Jule Wang
- Medical College, Tibet University, Lasa, Tibet 850000, China
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei Province 430071, China
| | - Meng Wu
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Owen B. McManus
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Min Li
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jilin Wu
- The International Scientist Working Station of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huai-Rong Luo
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan Province 650201, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, Shangdong Province 264005, China
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- The International Scientist Working Station of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei Province 430071, China
- Medical College, Tibet University, Lasa, Tibet 850000, China
| |
Collapse
|
6
|
Griffin CS, Bradley E, Dudem S, Hollywood MA, McHale NG, Thornbury KD, Sergeant GP. Muscarinic Receptor Induced Contractions of the Detrusor are Mediated by Activation of TRPC4 Channels. J Urol 2016; 196:1796-1808. [PMID: 27287524 DOI: 10.1016/j.juro.2016.05.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE Muscarinic receptor mediated contractions of the detrusor rely on Ca2+ influx through voltage-gated Ca2+ channels but to our knowledge the mechanism linking stimulation of M3Rs to the activation of voltage dependent Ca2+ channels has not been established. TRPC4 channels are receptor operated cation channels that couple muscarinic receptor activation to depolarization of intestinal smooth muscle cells, voltage-activated Ca2+ influx and contraction. We investigated whether TRPC4 channels are involved in cholinergic mediated contractions of the detrusor. MATERIALS AND METHODS Isometric tension recordings were made on strips of murine detrusor and intracellular Ca2+ measurements were made on isolated detrusor myocytes using confocal microscopy. Transcriptional expression of TRPC and IP3R subtypes in intact detrusor strips and isolated detrusor myocytes was assessed using reverse transcriptase-polymerase chain reaction. RESULTS Cholinergic stimulation of the detrusor induced by electrical field stimulation or exogenous application of carbachol or neostigmine evoked contractions consisting of a transient plus a tonic response, which was blocked by ML204, an inhibitor of TRPC4 channels. A phasic oscillatory component was blocked by the IP3R inhibitor 2-APB. Carbachol evoked reproducible Ca2+ responses in isolated detrusor myocytes, consisting of an initial Ca2+ transient followed by Ca2+ oscillations. ML204 inhibited the initial Ca2+ transient whereas 2-APB inhibited the Ca2+ oscillations. Reverse transcriptase-polymerase chain reaction experiments showed that TRPC4β, TRPC6 and IP3R1 were selectively expressed in isolated detrusor myocytes. Control experiments demonstrated that ML204 did not affect L-type Ca2+ or BK current amplitude, caffeine induced Ca2+ transients or KCl induced contractions of the detrusor. CONCLUSIONS Muscarinic receptor mediated contractions of the detrusor involve the activation of TRPC4β channels.
Collapse
Affiliation(s)
- Caoimhin S Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Eamonn Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Srikanth Dudem
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland.
| |
Collapse
|