1
|
Liu J, Wong G, Li H, Yang Y, Cao Y, Li Y, Wu Y, Zhang Z, Jin C, Wang X, Chen Y, Su B, Wang Z, Wang Q, Cao Y, Chen G, Qian Z, Zhao J, Wu G. Biosafety and immunology: An interdisciplinary field for health priority. BIOSAFETY AND HEALTH 2024; 6:310-318. [PMID: 40078733 PMCID: PMC11894974 DOI: 10.1016/j.bsheal.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 03/14/2025] Open
Abstract
Biosafety hazards can trigger a host immune response after infection, invasion, or contact with the host. Whether infection with a microorganism results in disease or biosafety concerns depends to a large extent on the immune status of the population. Therefore, it is essential to investigate the immunological characteristics of the host and the mechanisms of biological threats and agents to protect the host more effectively. Emerging and re-emerging infectious diseases, such as the current coronavirus disease 2019 (COVID-19) pandemic, have raised concerns regarding both biosafety and immunology worldwide. Interdisciplinary studies involved in biosafety and immunology are relevant in many fields, including the development of vaccines and other immune interventions such as monoclonal antibodies and T-cells, herd immunity (or population-level barrier immunity), immunopathology, and multispecies immunity, i.e., animals and even plants. Meanwhile, advances in immunological science and technology are occurring rapidly, resulting in important research achievements that may contribute to the recognition of emerging biosafety hazards, as well as early warning, prevention, and defense systems. This review provides an overview of the interdisciplinary field of biosafety and immunology. Close collaboration and innovative application of immunology in the field of biosafety is becoming essential for human health.
Collapse
Affiliation(s)
- Jun Liu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Gary Wong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12000, Cambodia
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Yang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuxi Cao
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150040, China
| | - Yan Wu
- Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, and School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zijie Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Cong Jin
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 200025, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | | | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Guobing Chen
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jincun Zhao
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
2
|
Liu WJ, Lei W, He X, Liu P, Wang Q, Wu Z, Tan Y, Song S, Wong G, Lu J, Jiang J, Wei Q, Li M, Ma J, Peng X, Li Y, Huang B, Tong Y, Han J, Wu G. Back to Science in Searching for SARS-CoV-2 Origins. China CDC Wkly 2023; 5:315-317. [PMID: 37193308 PMCID: PMC10182901 DOI: 10.46234/ccdcw2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/18/2023] Open
Affiliation(s)
- William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- William J. Liu,
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaozhou He
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peipei Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhui Song
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Gary Wong
- Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing, China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Juncai Ma
- Microbial Resource and Big Data Center, Chinese National Microbiology Data Center (NMDC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yixue Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Baoxu Huang
- China Animal Health and Epidemiology Center, Qingdao City, Shandong Province, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jun Han
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Guizhen Wu,
| |
Collapse
|
3
|
He X, Wang X, Fan G, Li F, Wu W, Wang Z, Fu M, Wei X, Ma S, Ma X. Metagenomic analysis of viromes in tissues of wild Qinghai vole from the eastern Tibetan Plateau. Sci Rep 2022; 12:17239. [PMID: 36241909 PMCID: PMC9562062 DOI: 10.1038/s41598-022-22134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
Rodents are natural reservoirs of diverse zoonotic viruses and widely distributed on the Tibetan Plateau. A comprehensive understanding of the virome in local rodent species could provide baseline of viral content and assist in efforts to reduce the risk for future emergence of rodent related zoonotic diseases. A total of 205 tissue and fecal samples from 41 wild Qinghai voles were collected. Metagenomic analyses were performed to outline the characteristics of the viromes, and phylogenetic analyses were used to identify the novel viral genomes. The virome distribution among five tissues (liver, lung, spleen, small intestine with content and feces) was also compared. We identified sequences related to 46 viral families. Novel viral genomes from distinct evolutionary lineages with known viruses were characterized for their genomic and evolutionary characteristics, including Hepatovirus, Hepacivirus, Rotavirus, and Picobirnavirus. Further analyses revealed that the core virome harbored by rodent internal tissues were quite different from the virome found in intestine and fecal samples. These findings provide an overview of the viromes in wild Qinghai voles, which are unique and the most common rodent species in the eastern Tibetan Plateau. A high diversity of viruses is likely present in rodent species in this area.
Collapse
Affiliation(s)
- Xiaozhou He
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China ,grid.9227.e0000000119573309Chinese Center for Disease Control and Prevention - Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Xu Wang
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| | - Guohao Fan
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China ,grid.9227.e0000000119573309Chinese Center for Disease Control and Prevention - Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Fan Li
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Weiping Wu
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| | - Zhenghuan Wang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, People’s Republic of China
| | - Meihua Fu
- grid.430328.eShanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Xu Wei
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, People’s Republic of China
| | - Shuo Ma
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, People’s Republic of China
| | - Xuejun Ma
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China ,grid.9227.e0000000119573309Chinese Center for Disease Control and Prevention - Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Liu WJ, Xu J. The Arms Race in the War Between Virus and Host: Implications for Anti-Infection Immunity. INFECTIOUS DISEASES & IMMUNITY 2022; 2:129-131. [PMID: 37520109 PMCID: PMC9295931 DOI: 10.1097/id9.0000000000000062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/25/2022]
Affiliation(s)
- William J. Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jianqing Xu
- Clinical Center for Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 201508, China
| |
Collapse
|
5
|
Liu WJ, Xiao H, Dai L, Liu D, Chen J, Qi X, Bi Y, Shi Y, Gao GF, Liu Y. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic. Front Med 2021; 15:507-527. [PMID: 33860875 PMCID: PMC8190734 DOI: 10.1007/s11684-020-0814-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaopeng Qi
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
| |
Collapse
|
6
|
Genomic epidemiological characteristics of dengue fever in Guangdong province, China from 2013 to 2017. PLoS Negl Trop Dis 2020; 14:e0008049. [PMID: 32126080 PMCID: PMC7053713 DOI: 10.1371/journal.pntd.0008049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/11/2020] [Indexed: 12/02/2022] Open
Abstract
Dengue fever, a mosquito-borne viral disease in humans, has been endemic in many Southeast Asian countries. Since its first outbreak in 1978 in Foshan, Guangdong province, China, dengue has been continually epidemic in recent years in Guangdong, which raised the concern whether dengue infection is endemic in Guangdong. In this study, we performed phylogenetic, recombinant, and nucleotide variation analyses of 114 complete genome sequences of dengue virus serotypes 1–4 (DENV1-4) collected from 2013 to 2017 in 18 of 21 cities of Guangdong. Phylogenetic analyses revealed that DENV sequences did not form a single cluster, indicating that dengue fever was not endemic in Guangdong, although DENV1-4 co-circulated in Guangdong. Twenty intra-serotype recombinant isolates involving DENV1-4 were detected, but no inter-serotype recombinant events were identified in this study. Additionally, the most recombinant events were detected simultaneously in the gene NS3 of DENV1-4. Nucleotide variation analyses showed that no significant intra-serotype differences were observed, whereas more significant inter-subtype differences were discovered in non-structural genes than in structural genes. Our investigation will facilitate the understanding of the current prevalent status of dengue fever in Guangdong and contribute to designing more effective preventive and control strategies for dengue infection. In 1978, dengue fever was first reported in Guangdong province, China, and this has been continuously prevalent in Guangdong in recent years. This is responsible for the heavy burden on the control of dengue, and raises the concern about whether dengue outbreaks have become endemic in Guangdong. Previous studies based on single E gene or few full-length genome sequences were inconclusive. In this study, we sequenced 114 DENV complete genomes of DENV1-4 obtained from 2013 to 2017 in Guangdong and further analyzed the epidemiological and molecular characteristics. Phylogenetic analyses revealed that dengue fever was not endemic in Guangdong, which was indirectly supported by results of our recombination analyses. Nucleotide variation analyses indicated that purification selection shaped dengue virus population. Our investigation will facilitate the development of more effective epidemiological surveillance strategies for dengue infection.
Collapse
|
7
|
Lu D, Liu K, Zhang D, Yue C, Lu Q, Cheng H, Wang L, Chai Y, Qi J, Wang LF, Gao GF, Liu WJ. Peptide presentation by bat MHC class I provides new insight into the antiviral immunity of bats. PLoS Biol 2019; 17:e3000436. [PMID: 31498797 PMCID: PMC6752855 DOI: 10.1371/journal.pbio.3000436] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/19/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Bats harbor many zoonotic viruses, including highly pathogenic viruses of humans and other mammals, but they are typically asymptomatic in bats. To further understand the antiviral immunity of bats, we screened and identified a series of bat major histocompatibility complex (MHC) I Ptal-N*01:01-binding peptides derived from four different bat-borne viruses, i.e., Hendra virus (HeV), Ebola virus (EBOV), Middle East respiratory syndrome coronavirus (MERS-CoV), and H17N10 influenza-like virus. The structures of Ptal-N*01:01 display unusual peptide presentation features in that the bat-specific 3-amino acid (aa) insertion enables the tight "surface anchoring" of the P1-Asp in pocket A of bat MHC I. As the classical primary anchoring positions, the B and F pockets of Ptal-N*01:01 also show unconventional conformations, which contribute to unusual peptide motifs and distinct peptide presentation. Notably, the features of bat MHC I may be shared by MHC I from various marsupials. Our study sheds light on bat adaptive immunity and may benefit future vaccine development against bat-borne viruses of high impact on humans.
Collapse
Affiliation(s)
- Dan Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kefang Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Di Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Can Yue
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Hao Cheng
- Beijing Institutes of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - George F. Gao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Beijing Institutes of Life Science, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - William J. Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Wu G. Laboratory biosafety in China: past, present, and future. BIOSAFETY AND HEALTH 2019; 1:56-58. [PMID: 32501443 PMCID: PMC7148667 DOI: 10.1016/j.bsheal.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 02/01/2023] Open
Abstract
The launch of the new journal, Biosafety and Health, presents me with a unique opportunity to recount the progress of laboratory biosafety (LB) in China and my contribution to this area over the past 30 years. Since the severe acute respiratory syndrome epidemic in 2003, China has constructed a primary network of high-level biosafety laboratories at different levels and established an expert team on LB. Furthermore, a series of LB management documents, including laws, regulations, standards, and guidelines, have been developed and published. This gradually maturing LB system has played a pivotal role in emerging infectious disease control and prevention, as well as in research, which in turn contributes to public health. In recent years, international collaboration between China and other countries has also been accelerated. Despite these achievements, we are still facing many challenges and opportunities in the field of LB. Sustainable LB development requires the joint efforts of the entire society and continuous international cooperation to safeguard global public health.
Collapse
Affiliation(s)
- Guizhen Wu
- Corresponding author: National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
9
|
Cao Y, Li J, Chu X, Liu H, Liu W, Liu D. Nanopore sequencing: a rapid solution for infectious disease epidemics. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1101-1103. [PMID: 31372817 PMCID: PMC7089317 DOI: 10.1007/s11427-019-9596-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/13/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Cao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Research Group of Computer Virology, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jing Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Chu
- Bureau of Major R&D Programs, Chinese Academy of Sciences, Beijing, 100864, China
| | - Haizhou Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Research Group of Computer Virology, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wenjun Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Research Group of Computer Virology, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|