1
|
Song Z, Tao Y, Liu Y, Li J. Advances in delivery systems for CRISPR/Cas-mediated cancer treatment: a focus on viral vectors and extracellular vesicles. Front Immunol 2024; 15:1444437. [PMID: 39281673 PMCID: PMC11392784 DOI: 10.3389/fimmu.2024.1444437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024] Open
Abstract
The delivery of CRISPR/Cas systems holds immense potential for revolutionizing cancer treatment, with recent advancements focusing on extracellular vesicles (EVs) and viral vectors. EVs, particularly exosomes, offer promising opportunities for targeted therapy due to their natural cargo transport capabilities. Engineered EVs have shown efficacy in delivering CRISPR/Cas components to tumor cells, resulting in inhibited cancer cell proliferation and enhanced chemotherapy sensitivity. However, challenges such as off-target effects and immune responses remain significant hurdles. Viral vectors, including adeno-associated viruses (AAVs) and adenoviral vectors (AdVs), represent robust delivery platforms for CRISPR/Cas systems. AAVs, known for their safety profile, have already been employed in clinical trials for gene therapy, demonstrating their potential in cancer treatment. AdVs, capable of infecting both dividing and non-dividing cells, offer versatility in CRISPR/Cas delivery for disease modeling and drug discovery. Despite their efficacy, viral vectors present several challenges, including immune responses and off-target effects. Future directions entail refining delivery systems to enhance specificity and minimize adverse effects, heralding personalized and effective CRISPR/Cas-mediated cancer therapies. This article underscores the importance of optimized delivery mechanisms in realizing the full therapeutic potential of CRISPR/Cas technology in oncology. As the field progresses, addressing these challenges will be pivotal for translating CRISPR/Cas-mediated cancer treatments from bench to bedside.
Collapse
Affiliation(s)
- Zhidu Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Liu
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, China
| | - Jian Li
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Chen Y, Wang J, An C, Bao S, Zhang C. The role and research progress of macrophages after heart transplantation. Heliyon 2024; 10:e33844. [PMID: 39027574 PMCID: PMC11255595 DOI: 10.1016/j.heliyon.2024.e33844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Since the 60s of the 20th century, heart transplantation has been the best treatment for patients with end-stage heart failure. Due to the increasing number of patients, how to expand the number of donor organs and enhance immune compatibility has become an urgent problem to be solved at this stage. Although current immunosuppression is effective, its side effects are also quite obvious, such as opportunistic infections and malignant tumors. In this review, we focus on the important role in macrophages after heart transplantation and their potential targets for achieving allogeneic graft tolerance, in order to improve effective graft survival and reduce infection and the occurrence of malignant tumors.
Collapse
Affiliation(s)
- Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - JianPeng Wang
- School of First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - ShanQing Bao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - ChengXin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| |
Collapse
|
3
|
Gil-Cabrerizo P, Simon-Yarza T, Garbayo E, Blanco-Prieto MJ. Navigating the landscape of RNA delivery systems in cardiovascular disease therapeutics. Adv Drug Deliv Rev 2024; 208:115302. [PMID: 38574952 DOI: 10.1016/j.addr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Cardiovascular diseases (CVDs) stand as the leading cause of death worldwide, posing a significant global health challenge. Consequently, the development of innovative therapeutic strategies to enhance CVDs treatment is imperative. RNA-based therapies, encompassing non-coding RNAs, mRNA, aptamers, and CRISPR/Cas9 technology, have emerged as promising tools for addressing CVDs. However, inherent challenges associated with RNA, such as poor cellular uptake, susceptibility to RNase degradation, and capture by the reticuloendothelial system, underscore the necessity of combining these therapies with effective drug delivery systems. Various non-viral delivery systems, including extracellular vesicles, lipid-based carriers, polymeric and inorganic nanoparticles, as well as hydrogels, have shown promise in enhancing the efficacy of RNA therapeutics. In this review, we offer an overview of the most relevant RNA-based therapeutic strategies explored for addressing CVDs and emphasize the pivotal role of delivery systems in augmenting their effectiveness. Additionally, we discuss the current status of these therapies and the challenges that hinder their clinical translation.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Elisa Garbayo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
4
|
Zhu X, Gao M, Yang Y, Li W, Bao J, Li Y. The CRISPR/Cas9 System Delivered by Extracellular Vesicles. Pharmaceutics 2023; 15:pharmaceutics15030984. [PMID: 36986843 PMCID: PMC10053467 DOI: 10.3390/pharmaceutics15030984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems can precisely manipulate DNA sequences to change the characteristics of cells and organs, which has potential in the mechanistic research on genes and the treatment of diseases. However, clinical applications are restricted by the lack of safe, targeted and effective delivery vectors. Extracellular vesicles (EVs) are an attractive delivery platform for CRISPR/Cas9. Compared with viral and other vectors, EVs present several advantages, including safety, protection, capacity, penetrating ability, targeting ability and potential for modification. Consequently, EVs are profitably used to deliver the CRISPR/Cas9 in vivo. In this review, the advantages and disadvantages of the delivery form and vectors of the CRISPR/Cas9 are concluded. The favorable traits of EVs as vectors, such as the innate characteristics, physiological and pathological functions, safety and targeting ability of EVs, are summarized. Furthermore, in terms of the delivery of the CRISPR/Cas9 by EVs, EV sources and isolation strategies, the delivery form and loading methods of the CRISPR/Cas9 and applications have been concluded and discussed. Finally, this review provides future directions of EVs as vectors of the CRISPR/Cas9 system in clinical applications, such as the safety, capacity, consistent quality, yield and targeting ability of EVs.
Collapse
Affiliation(s)
- Xinglong Zhu
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengyu Gao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongfeng Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weimin Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Jin S, Lin Q, Gao Q, Gao C. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs). Nat Protoc 2023; 18:831-853. [PMID: 36434096 DOI: 10.1038/s41596-022-00773-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
Prime editors (PEs), which can install desired base edits without donor DNA or double-strand breaks, have been used in plants and can, in principle, accelerate crop improvement and breeding. However, their editing efficiency in plants is generally low. Optimizing the prime editing guide RNA (pegRNA) by designing the sequence on the basis of melting temperature, using dual-pegRNAs and engineering PEs have all been shown to enhance PE efficiency. In addition, an automated pegRNA design platform, PlantPegDesigner, has been developed on the basis of rice prime editing experimental data. In this protocol, we present detailed protocols for designing and optimizing pegRNAs using PlantPegDesigner, constructing engineered plant PE vectors with enhanced editing efficiency for prime editing, evaluating prime editing efficiencies using a reporter system and comparing the effectiveness and byproducts of PEs by deep amplicon sequencing. Using this protocol, researchers can construct optimized pegRNAs for prime editing in 4-7 d and obtain prime-edited rice or wheat plants within 3 months.
Collapse
Affiliation(s)
- Shuai Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiupeng Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- Qi Biodesign, Life Science Park, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Sharma KK, Palakolanu SR, Bhattacharya J, Shankhapal AR, Bhatnagar-Mathur P. CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects. Front Genet 2022; 13:999207. [PMID: 36276961 PMCID: PMC9582247 DOI: 10.3389/fgene.2022.999207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022] Open
Abstract
Technologies and innovations are critical for addressing the future food system needs where genetic resources are an essential component of the change process. Advanced breeding tools like "genome editing" are vital for modernizing crop breeding to provide game-changing solutions to some of the "must needed" traits in agriculture. CRISPR/Cas-based tools have been rapidly repurposed for editing applications based on their improved efficiency, specificity and reduced off-target effects. Additionally, precise gene-editing tools such as base editing, prime editing, and multiplexing provide precision in stacking of multiple traits in an elite variety, and facilitating specific and targeted crop improvement. This has helped in advancing research and delivery of products in a short time span, thereby enhancing the rate of genetic gains. A special focus has been on food security in the drylands through crops including millets, teff, fonio, quinoa, Bambara groundnut, pigeonpea and cassava. While these crops contribute significantly to the agricultural economy and resilience of the dryland, improvement of several traits including increased stress tolerance, nutritional value, and yields are urgently required. Although CRISPR has potential to deliver disruptive innovations, prioritization of traits should consider breeding product profiles and market segments for designing and accelerating delivery of locally adapted and preferred crop varieties for the drylands. In this context, the scope of regulatory environment has been stated, implying the dire impacts of unreasonable scrutiny of genome-edited plants on the evolution and progress of much-needed technological advances.
Collapse
Affiliation(s)
- Kiran K. Sharma
- Sustainable Agriculture Programme, The Energy and Resources Institute (TERI), India Habitat Center, New Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Aishwarya R. Shankhapal
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- International Maize and Wheat Improvement Center (CIMMYT), México, United Kingdom
| |
Collapse
|
7
|
Blocking Rice Shoot Gravitropism by Altering One Amino Acid in LAZY1. Int J Mol Sci 2022; 23:ijms23169452. [PMID: 36012716 PMCID: PMC9409014 DOI: 10.3390/ijms23169452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Tiller angle is an important trait that determines plant architecture and yield in cereal crops. Tiller angle is partially controlled during gravistimulation by the dynamic re-allocation of LAZY1 (LA1) protein between the nucleus and plasma membrane, but the underlying mechanism remains unclear. In this study, we identified and characterized a new allele of LA1 based on analysis of a rice (Oryza sativa L.) spreading-tiller mutant la1G74V, which harbors a non-synonymous mutation in the predicted transmembrane (TM) domain-encoding region of this gene. The mutation causes complete loss of shoot gravitropism, leading to prostrate growth of plants. Our results showed that LA1 localizes not only to the nucleus and plasma membrane but also to the endoplasmic reticulum. Removal of the TM domain in LA1 showed spreading-tiller phenotype of plants similar to la1G74V but did not affect the plasma membrane localization; thus, making it distinct from its ortholog ZmLA1 in Zea mays. Therefore, we propose that the TM domain is indispensable for the biological function of LA1, but this domain does not determine the localization of the protein to the plasma membrane. Our study provides new insights into the LA1-mediated regulation of shoot gravitropism.
Collapse
|
8
|
Huang Y, Shang M, Liu T, Wang K. High-throughput methods for genome editing: the more the better. PLANT PHYSIOLOGY 2022; 188:1731-1745. [PMID: 35134245 PMCID: PMC8968257 DOI: 10.1093/plphys/kiac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 05/04/2023]
Abstract
During the last decade, targeted genome-editing technologies, especially clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) technologies, have permitted efficient targeting of genomes, thereby modifying these genomes to offer tremendous opportunities for deciphering gene function and engineering beneficial traits in many biological systems. As a powerful genome-editing tool, the CRISPR/Cas systems, combined with the development of next-generation sequencing and many other high-throughput techniques, have thus been quickly developed into a high-throughput engineering strategy in animals and plants. Therefore, here, we review recent advances in using high-throughput genome-editing technologies in animals and plants, such as the high-throughput design of targeted guide RNA (gRNA), construction of large-scale pooled gRNA, and high-throughput genome-editing libraries, high-throughput detection of editing events, and high-throughput supervision of genome-editing products. Moreover, we outline perspectives for future applications, ranging from medication using gene therapy to crop improvement using high-throughput genome-editing technologies.
Collapse
Affiliation(s)
- Yong Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Meiqi Shang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Tingting Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| |
Collapse
|
9
|
Chaudhuri A, Halder K, Datta A. Classification of CRISPR/Cas system and its application in tomato breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:367-387. [PMID: 34973111 PMCID: PMC8866350 DOI: 10.1007/s00122-021-03984-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/21/2021] [Indexed: 05/03/2023]
Abstract
Remarkable diversity in the domain of genome loci architecture, structure of effector complex, array of protein composition, mechanisms of adaptation along with difference in pre-crRNA processing and interference have led to a vast scope of detailed classification in bacterial and archaeal CRISPR/Cas systems, their intrinsic weapon of adaptive immunity. Two classes: Class 1 and Class 2, several types and subtypes have been identified so far. While the evolution of the effector complexes of Class 2 is assigned solely to mobile genetic elements, the origin of Class 1 effector molecules is still in a haze. Majority of the types target DNA except type VI, which have been found to target RNA exclusively. Cas9, the single effector protein, has been the primary focus of CRISPR-mediated genome editing revolution and is an integral part of Class 2 (type II) system. The present review focuses on the different CRISPR types in depth and the application of CRISPR/Cas9 for epigenome modification, targeted base editing and improving traits such as abiotic and biotic stress tolerance, yield and nutritional aspects of tomato breeding.
Collapse
Affiliation(s)
- Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067 India
| | - Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067 India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067 India
| |
Collapse
|
10
|
A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1535-1546. [PMID: 35122622 PMCID: PMC8817169 DOI: 10.1007/s11427-021-2058-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/04/2022]
Abstract
Gene-edited pigs for agricultural and biomedical applications are typically generated using somatic cell nuclear transfer (SCNT). However, SCNT requires the use of monoclonal cells as donors, and the time-consuming and laborious monoclonal selection process limits the production of large populations of gene-edited animals. Here, we developed a rapid and efficient method named RE-DSRNP (reporter RNA enriched dual-sgRNA/CRISPR-Cas9 ribonucleoproteins) for generating gene-edited donor cells. RE-DSRNP takes advantage of the precise and efficient editing features of dual-sgRNA and the high editing efficiency, low off-target effects, transgene-free nature, and low cytotoxic characteristics of reporter RNA enriched RNPs (CRISPR-Cas9 ribonucleoproteins), thus eliminating the need for the selection of monoclonal cells and thereby greatly reducing the generation time of donor cells from 3–4 weeks to 1 week, while also reducing the extent of apoptosis and chromosomal aneuploidy of donor cells. We applied RE-DSRNP to produce cloned pigs bearing a deletion edit of the wild-type p53-induced phosphatase 1 (WIP1) gene: among 32 weaned cloned pigs, 31 (97%) carried WIP1 edits, and 15 (47%) were homozygous for the designed fragment deletion, and no off-target event was detected. The WIP1 knockout (KO) pigs exhibited male reproductive disorders, illustrating the utility of RE-DSRNP for rapidly generating precisely edited animals for functional genomics and disease research. RE-DSRNP’s strong editing performance in a large animal and its marked reduction in the required time for producing SCNT donor cells support its application prospects for rapidly generating populations of transgene-free cloned animals.
Collapse
|
11
|
Liang Z, Wu Y, Ma L, Guo Y, Ran Y. Efficient Genome Editing in Setaria italica Using CRISPR/Cas9 and Base Editors. FRONTIERS IN PLANT SCIENCE 2022; 12:815946. [PMID: 35095986 PMCID: PMC8793480 DOI: 10.3389/fpls.2021.815946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The genome editing toolbox based on CRISPR/Cas9 has brought revolutionary changes to agricultural and plant scientific research. With the development of stable genetic transformation protocols, a highly efficient genome editing system for foxtail millet (Setaria italica) is required. In the present study, we use the CRISPR/Cas9 single- and multi-gene knockout system to target the SiFMBP, SiDof4, SiBADH2, SiGBSS1, and SiIPK1 genes in the foxtail millet protoplasts to screen out highly efficient targeted sgRNAs. Then, we recovered homozygous mutant plants with most of the targeted genes through an Agrobacterium-mediated genetic transformation of foxtail millet. The mutagenesis frequency in the T0 generation was as high as 100%, and it was passed stably on to the next generation. After screening these targeted edited events, we did not detect off-target mutations at potential sites. Based on this system, we have achieved base editing successfully using two base editors (CBE and ABE) to target the SiALS and SiACC genes of foxtail millet. By utilizing CBE to target the SiALS gene, we created a homozygous herbicide-tolerant mutant plant. The current system could enhance the analysis of functional genomics and genetic improvement of foxtail millet.
Collapse
Affiliation(s)
- Zhen Liang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Yuqing Wu
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Lingling Ma
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Yingjie Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Shenzhen Polytechnic, Shenzhen, China
| | - Yidong Ran
- Genovo Biotechnology Co. Ltd, Tianjin, China
| |
Collapse
|
12
|
Jin S, Lin Q, Luo Y, Zhu Z, Liu G, Li Y, Chen K, Qiu JL, Gao C. Genome-wide specificity of prime editors in plants. Nat Biotechnol 2021; 39:1292-1299. [PMID: 33859403 DOI: 10.1038/s41587-021-00891-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
Although prime editors (PEs) have the potential to facilitate precise genome editing in therapeutic, agricultural and research applications, their specificity has not been comprehensively evaluated. To provide a systematic assessment in plants, we first examined the mismatch tolerance of PEs in plant cells and found that the editing frequency was influenced by the number and location of mismatches in the primer binding site and spacer of the prime editing guide RNA (pegRNA). Assessing the activity of 12 pegRNAs at 179 predicted off-target sites, we detected only low frequencies of off-target edits (0.00~0.23%). Whole-genome sequencing of 29 PE-treated rice plants confirmed that PEs do not induce genome-wide pegRNA-independent off-target single-nucleotide variants or small insertions/deletions. We also show that ectopic expression of the Moloney murine leukemia virus reverse transcriptase as part of the PE does not change retrotransposon copy number or telomere structure or cause insertion of pegRNA or messenger RNA sequences into the genome.
Collapse
Affiliation(s)
- Shuai Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiupeng Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zixu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guanwen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yunjia Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Zhou J, Ren Z, Xu J, Zhang J, Chen YE. Gene editing therapy ready for cardiovascular diseases: opportunities, challenges, and perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:6-9. [PMID: 37724071 PMCID: PMC10471110 DOI: 10.1515/mr-2021-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/06/2021] [Indexed: 09/20/2023]
Abstract
Gene editing nucleases (GENs), represented by CRISPR/Cas9, have become major tools in biomedical research and offer potential cures for many human diseases. Gene editing therapy (GETx) studies in animal models targeting genes such as proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein C3 (APOC3), angiopoietin Like 3 (ANGPTL3) and inducible degrader of the low-density lipoprotein receptor (IDOL) have demonstrated the benefits and advantages of GETx in managing atherosclerosis. Here we present our views on this brand new therapeutic option for cardiovascular diseases (CVD).
Collapse
Affiliation(s)
- Jun Zhou
- Center for Advanced Models for Translational
Sciences and Therapeutics, University of Michigan Medical
Center, Ann Arbor 48109, MI,
USA
- Department of Pharmacology,
University of Michigan Medical
Center, Ann Arbor 48109, MI,
USA
| | - Zhuoying Ren
- Center for Advanced Models for Translational
Sciences and Therapeutics, University of Michigan Medical
Center, Ann Arbor 48109, MI,
USA
- Department of Pharmacology,
University of Michigan Medical
Center, Ann Arbor 48109, MI,
USA
| | - Jie Xu
- Center for Advanced Models for Translational
Sciences and Therapeutics, University of Michigan Medical
Center, Ann Arbor 48109, MI,
USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational
Sciences and Therapeutics, University of Michigan Medical
Center, Ann Arbor 48109, MI,
USA
| | - Y. Eugene Chen
- Center for Advanced Models for Translational
Sciences and Therapeutics, University of Michigan Medical
Center, Ann Arbor 48109, MI,
USA
- Department of Pharmacology,
University of Michigan Medical
Center, Ann Arbor 48109, MI,
USA
| |
Collapse
|
14
|
Liang Z, Wu Y, Guo Y, Liu Y, Ma L, Wu Y. Bi-functional selection markers assist segregation of transgene-free, genome-edited mutants. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1567-1570. [PMID: 33521855 DOI: 10.1007/s11427-020-1820-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/08/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Zhen Liang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Yuqing Wu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Yingjie Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Yanxiu Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lingling Ma
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Yincen Wu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
15
|
CRISPR-Cas adaptive immune systems in Sulfolobales: genetic studies and molecular mechanisms. SCIENCE CHINA-LIFE SCIENCES 2020; 64:678-696. [DOI: 10.1007/s11427-020-1745-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022]
|
16
|
Zhang D, Hussain A, Manghwar H, Xie K, Xie S, Zhao S, Larkin RM, Qing P, Jin S, Ding F. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1651-1669. [PMID: 32271968 PMCID: PMC7336378 DOI: 10.1111/pbi.13383] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 05/18/2023]
Abstract
Over the last three decades, the development of new genome editing techniques, such as ODM, TALENs, ZFNs and the CRISPR-Cas system, has led to significant progress in the field of plant and animal breeding. The CRISPR-Cas system is the most versatile genome editing tool discovered in the history of molecular biology because it can be used to alter diverse genomes (e.g. genomes from both plants and animals) including human genomes with unprecedented ease, accuracy and high efficiency. The recent development and scope of CRISPR-Cas system have raised new regulatory challenges around the world due to moral, ethical, safety and technical concerns associated with its applications in pre-clinical and clinical research, biomedicine and agriculture. Here, we review the art, applications and potential risks of CRISPR-Cas system in genome editing. We also highlight the patent and ethical issues of this technology along with regulatory frameworks established by various nations to regulate CRISPR-Cas-modified organisms/products.
Collapse
Affiliation(s)
- Debin Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Public AdministrationHuazhong Agricultural UniversityWuhanChina
| | - Amjad Hussain
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hakim Manghwar
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kabin Xie
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationWuhanChina
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationWuhanChina
| | - Robert M. Larkin
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Ping Qing
- College of Public AdministrationHuazhong Agricultural UniversityWuhanChina
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Fang Ding
- Hubei Key Laboratory of Plant PathologyCollege of Plant Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
17
|
Liu Q, Jiao X, Meng X, Wang C, Xu C, Tian Z, Xie C, Li G, Li J, Yu H, Wang K. FED: a web tool for foreign element detection of genome-edited organism. SCIENCE CHINA-LIFE SCIENCES 2020; 64:167-170. [PMID: 32504339 DOI: 10.1007/s11427-020-1731-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Qing Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Xiaozhen Jiao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chun Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuanxiao Xie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| |
Collapse
|
18
|
Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1918-1927. [DOI: 10.1007/s11427-020-1671-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
|
19
|
Zhang Y, Zhang Q, Chen QJ. Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1491-1498. [PMID: 32279281 DOI: 10.1007/s11427-020-1685-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022]
Abstract
Lack of appropriate methods for delivery of genome-editing reagents is a major barrier to CRISPR/Cas-mediated genome editing in plants. Agrobacterium-mediated genetic transformation (AMGT) is the preferred method of CRISPR/Cas reagent delivery, and researchers have recently made great improvements to this process. In this article, we review the development of AMGT and AMGT-based delivery of CRISPR/Cas reagents. We give an overview of the development of AMGT vectors including binary vector, superbinary vector, dual binary vector, and ternary vector systems. We also review the progress in Agrobacterium genomics and Agrobacterium genetic engineering for optimal strains. We focus in particular on the ternary vector system and the resources we developed. In summary, it is our opinion that Agrobacterium-mediated CRISPR/Cas genome editing in plants is entering an era of ternary vector systems, which are often integrated with morphogenic regulators. The new vectors described in this article are available from Addgene and/or MolecularCloud for sharing with academic investigators for noncommercial research.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Ge S, Guo YL. Evolution of genes and genomes in the genomics era. SCIENCE CHINA-LIFE SCIENCES 2020; 63:602-605. [PMID: 32189239 DOI: 10.1007/s11427-020-1672-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
21
|
Shortened snRNA promoters for efficient CRISPR/Cas-based multiplex genome editing in monocot plants. SCIENCE CHINA-LIFE SCIENCES 2020; 63:933-935. [PMID: 31942685 DOI: 10.1007/s11427-019-1612-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022]
|