1
|
Abpeikar Z, Alizadeh AA, Ahmadyousefi Y, Najafi AA, Safaei M. Engineered cells along with smart scaffolds: critical factors for improving tissue engineering approaches. Regen Med 2022; 17:855-876. [PMID: 36065834 DOI: 10.2217/rme-2022-0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review, gene delivery and its applications are discussed in tissue engineering (TE); also, new techniques such as the CRISPR-Cas9 system, synthetics biology and molecular dynamics simulation to improve the efficiency of the scaffolds have been studied. CRISPR-Cas9 is expected to make significant advances in TE in the future. The fundamentals of synthetic biology have developed powerful and flexible methods for programming cells via artificial genetic circuits. The combination of regenerative medicine and artificial biology allows the engineering of cells and organisms for use in TE, biomaterials, bioprocessing and scaffold development. The dynamics of protein adsorption at the scaffold surface at the atomic level can provide valuable guidelines for the future design of TE scaffolds /implants.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering & Applied Cell Sciences, School of Advance Medical Science & Technology, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Ali Akbar Alizadeh
- Department of Tissue Engineering & Applied Cell Sciences, School of Advance Medical Science & Technology, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Yaghoub Ahmadyousefi
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838687, Iran
| | - Ali Akbar Najafi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7919693116, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| |
Collapse
|
2
|
Chen S, Jiao Y, Pan F, Guan Z, Cheng SH, Sun D. Knock-in of a Large Reporter Gene via the High-Throughput Microinjection of the CRISPR/Cas9 System. IEEE Trans Biomed Eng 2022; 69:2524-2532. [PMID: 35133958 DOI: 10.1109/tbme.2022.3149530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The non-viral delivery of the prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) nuclease system provides promising solutions for gene therapy. However, traditional chemical and physical delivery approaches for gene knock-in are confronted by significant challenges to overcome the draw-backs of low efficiency and high toxicity. An alternative method for directly delivering CRISPR components into single cells is microinjection. Here, we present the high-throughput robotic microinjection of CRISPR machinery plasmids to produce gene insertions. We demonstrate that the microinjection of CRISPR/Cas9 with an enhanced green fluorescent protein (eGFP) donor template into single HepG2 cells can achieve re-porter gene knock-in targeting the adeno-associated virus site 1 locus. Homology-directed repair-mediated knock-in can be ob-served with an efficiency of 41%. Assessment via T7E1 assay indicates that the eGFP knock-in cells exhibit no detectable changes at potential off-target sites. A case study of injecting the eGFP knock-in cells into zebrafish (Danio rerio) embryos to form an in vivo tumor model is conducted. Results demonstrate the efficiency of combining microinjection with the CRISPR/Cas9 system in achieving gene knock-in.
Collapse
|
3
|
Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, Khurana I, Banothu AK, Weiskirchen R, Bharani KK. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci 2022; 294:120375. [PMID: 35123997 DOI: 10.1016/j.lfs.2022.120375] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
Gene therapy is the product of man's quest to eliminate diseases. Gene therapy has three facets namely, gene silencing using siRNA, shRNA and miRNA, gene replacement where the desired gene in the form of plasmids and viral vectors, are directly administered and finally gene editing based therapy where mutations are modified using specific nucleases such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short tandem repeats (CRISPR)/CRISPR-associated protein (Cas)-associated nucleases. Transfer of gene is either through transformation where under specific conditions the gene is directly taken up by the bacterial cells, transduction where a bacteriophage is used to transfer the genetic material and lastly transfection that involves forceful delivery of gene using either viral or non-viral vectors. The non-viral transfection methods are subdivided into physical, chemical and biological. The physical methods include electroporation, biolistic, microinjection, laser, elevated temperature, ultrasound and hydrodynamic gene transfer. The chemical methods utilize calcium- phosphate, DAE-dextran, liposomes and nanoparticles for transfection. The biological methods are increasingly using viruses for gene transfer, these viruses could either integrate within the genome of the host cell conferring a stable gene expression, whereas few other non-integrating viruses are episomal and their expression is diluted proportional to the cell division. So far, gene therapy has been wielded in a plethora of diseases. However, coherent and innocuous delivery of genes is among the major hurdles in the use of this promising therapy. Hence this review aims to highlight the current options available for gene transfer along with the advantages and limitations of every method.
Collapse
Affiliation(s)
- Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik 400020, Maharashtra, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | | | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India.
| |
Collapse
|
4
|
Al-Mulhim F, Alqosaibi AI, Al-Muhnna A, Farid K, Abdel-Ghany S, Rizk H, Prince AB, Isichei A, Sabit H. CRISPR/Cas9-mediated activation of CDH1 suppresses metastasis of breast cancer in rats. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
5
|
Zhuo C, Zhang J, Lee JH, Jiao J, Cheng D, Liu L, Kim HW, Tao Y, Li M. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct Target Ther 2021; 6:238. [PMID: 34148061 PMCID: PMC8214627 DOI: 10.1038/s41392-021-00645-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/09/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) gene editing technology, as a revolutionary breakthrough in genetic engineering, offers a promising platform to improve the treatment of various genetic and infectious diseases because of its simple design and powerful ability to edit different loci simultaneously. However, failure to conduct precise gene editing in specific tissues or cells within a certain time may result in undesirable consequences, such as serious off-target effects, representing a critical challenge for the clinical translation of the technology. Recently, some emerging strategies using genetic regulation, chemical and physical strategies to regulate the activity of CRISPR/Cas9 have shown promising results in the improvement of spatiotemporal controllability. Herein, in this review, we first summarize the latest progress of these advanced strategies involving cell-specific promoters, small-molecule activation and inhibition, bioresponsive delivery carriers, and optical/thermal/ultrasonic/magnetic activation. Next, we highlight the advantages and disadvantages of various strategies and discuss their obstacles and limitations in clinical translation. Finally, we propose viewpoints on directions that can be explored to further improve the spatiotemporal operability of CRISPR/Cas9.
Collapse
Grants
- the Guangdong Province Science and Technology Innovation Special Fund (International Scientific Cooperation, 2018A050506035), the National Natural Science Foundation of China (51903256).
- the National Key Research and Development Program of China (2016YFE0117100), the National Natural Science Foundation of China (21875289 and U1501243), the Guangdong-Hong Kong Joint Innovation Project (2016A050503026), the Major Project on the Integration of Industry, Education and Research of Guangzhou City (201704030123), the Science and Technology Program of Guangzhou (201704020016), the Guangdong Innovative and Entrepreneurial Research Team Program (2013S086)
- National Research Foundation, Republic of Korea (2015K1A1A2032163, 2018K1A4A3A01064257, 2018R1A2B3003446)
- the National Key Research and Development Program of China (2019YFA0111300, 2016YFE0117100), the National Natural Science Foundation of China (21907113), the Guangdong Provincial Pearl River Talents Program (2019QN01Y131), the Thousand Talents Plan.
Collapse
Affiliation(s)
- Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Ju Jiao
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Li Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.
| |
Collapse
|
6
|
Tiruneh G/Medhin M, Chekol Abebe E, Sisay T, Berhane N, Bekele T, Asmamaw Dejenie T. Current Applications and Future Perspectives of CRISPR-Cas9 for the Treatment of Lung Cancer. Biologics 2021; 15:199-204. [PMID: 34103894 PMCID: PMC8178582 DOI: 10.2147/btt.s310312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 12/21/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins are referred to as CRISPR-Cas9. Bacteria and archaea have an adaptive (acquired) immune system. As a result, developing the best single regulated RNA and Cas9 endonuclease proteins and implementing the method in clinical practice would aid in the treatment of diseases of various origins, including lung cancers. This seminar aims to provide an overview of CRISPR-Cas9 technology, as well as current and potential applications and perspectives for the method, as well as its mechanism of action in lung cancer therapy. This technology can be used to treat lung cancer in two different ways. The first approach involves creating single directed RNA and Cas9 proteins and then distributing them to cancer cells using suitable methods. Single directed RNA looks directly at the lung's mutated epidermal growth factor receptor and makes a complementary match, which is then cleaved with Cas9 protein, slowing cancer progression. The second method is to manipulate the expression of ligand-receptors on immune lymphocytic cells. For example, if the CRISPR-Cas9 system disables the expression of cancer receptors on lymphocytes, it decreases the contact between the tumor cell and its ligand-receptor, thus slowing cancer progression.
Collapse
Affiliation(s)
- Markeshaw Tiruneh G/Medhin
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tekeba Sisay
- Institute of Biotechnology, College of Natural Science, University of Gondar, Gondar, Ethiopia
| | - Nega Berhane
- Institute of Biotechnology, College of Natural Science, University of Gondar, Gondar, Ethiopia
| | - Tesfahun Bekele
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
A new era for evolutionary developmental biology in non-model organisms. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1251-1253. [PMID: 32548692 DOI: 10.1007/s11427-020-1748-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 01/21/2023]
|