1
|
He J, Xie P, Ou Y. Curcumin Restrains TGF-β2-Induced Proliferation, Migration, Invasion and EMT in Lens Epithelial Cells by Regulating FGF7/ZEB1 Axis. J Biochem Mol Toxicol 2025; 39:e70191. [PMID: 40009049 DOI: 10.1002/jbt.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Posterior capsular opacification (PCO) is the most common complication after cataract surgery characterized by hyperproliferation, migration and epithelial-mesenchymal transition (EMT) in residual lens epithelial cells (LECs). Curcumin is a polyphenol compound possessing diverse pharmacological properties. Here, we investigated the functions and its potential mechanisms of curcumin in PCO using transforming growth factor beta2 (TGF-β2)-treated LECs. Cell phenotypes were analyzed using MTT, 5-thynyl-2'-deoxyuridine (EdU), transwell, and scratch assays, respectively. Levels of FGF7 (Fibroblast Growth Factor 7), ZEB1 (Zinc finger E-box binding homeobox 1), and EMT-related proteins were detected by qRT-PCR and western blot analysis. The protein interaction between FGF7 and ZEB1 was validated using Co-immunoprecipitation assay. Curcumin treatment weakened TGF-β2-induced proliferation, migration, invasion and EMT progression in LECs. The expression of FGF7 was boosted by curcumin in LECs. Functionally, FGF7 deficiency suppressed TGF-β2-induced proliferation, migration, invasion and EMT progression in LECs, and could reverse the suppressing action of curcumin on TGF-β2-induced LEC dysfunction. Mechanistically, FGF7 directly interacted with ZEB1, and curcumin could regulate ZEB1 expression via FGF7. Moreover, ZEB1 overexpression could abolish the protective effects of curcumin or FGF7 deficiency on LECs under TGF-β2 stimulation. In conclusion, curcumin protected LECs against TGF-β2-induced enhancement on the proliferation, migration, invasion and EMT process by regulating FGF7/ZEB1 axis, suggesting a new insight into the application of curcumin in PCO therapy.
Collapse
Affiliation(s)
- Jing He
- Department of Ophthalmology, Jiujiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, China
| | - Ping Xie
- Department of Ophthalmology, Jiujiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, China
| | - Yangjun Ou
- Department of Ophthalmology, Jiujiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, China
| |
Collapse
|
2
|
Ma J, Sun Q, Chen Y, Li J, Chen S, Luo L. Exosomes containing miR-148a-3p derived from mesenchymal stem cells suppress epithelial-mesenchymal transition in lens epithelial cells. Stem Cells Transl Med 2025; 14:szae091. [PMID: 40036306 PMCID: PMC11878568 DOI: 10.1093/stcltm/szae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/02/2024] [Indexed: 03/06/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is responsible for the development of fibrotic cataracts, which contribute to severe visual impairment. Recent evidence has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) can attenuate EMT in several tissues. However, the effect of MSC-Exo on EMT in LECs (LECs-EMT) has not been determined. In this study, we isolated exosomes from human umbilical cord MSCs (hucMSC-Exo) and evaluated their effect on LECs-EMT both in vitro and in vivo. HucMSC-Exo application significantly suppressed the expression of mesenchymal cell-associated genes while increasing the expression of epithelial cell-associated genes. Cell proliferation and migration of LECs undergoing EMT were inhibited after hucMSC-Exo treatment. The volume of EMT plaques in mice with injury-induced anterior subcapsular cataract (ASC) was significantly reduced in the hucMSC-Exo-treated group. Furthermore, miR-148a-3p was abundant in hucMSC-Exo. After transfection with miR-148a-3p inhibitor, the anti-fibrotic effect of hucMSC-Exo was attenuated in LECs-EMT. A dual-luciferase reporter assay identified PRNP as a direct target gene of miR-148a-3p. Furthermore, we verified that hucMSC-Exo inhibited LECs-EMT through the miR-148a-3p/PRNP axis and the potential downstream ERK signaling pathway. Taken together, our work reveals the inhibitory effect of hucMSC-Exo on LECs-EMT and the underlying mechanism involved, which may provide potential therapeutic options for fibrotic cataracts.
Collapse
Affiliation(s)
- Jingyu Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Qihang Sun
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong 999077, People’s Republic of China
| | - Yijia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Jinyan Li
- Department of Ophthalmology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People’s Republic of China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People’s Republic of China
| |
Collapse
|
3
|
Zhang J, Yang X, Zong Y, Yu T, Yang X. miR-196b-5p regulates inflammatory process and migration via targeting Nras in trabecular meshwork cells. Int Immunopharmacol 2024; 129:111646. [PMID: 38325046 DOI: 10.1016/j.intimp.2024.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Glaucoma, an insidious ophthalmic pathology, is typified by an aberrant surge in intraocular pressure (IOP) which culminates in the degeneration of retinal ganglion cells and optical neuropathy. The mitigation of IOP stands as the principal therapeutic strategy to forestall vision loss. The trabecular meshwork's (TM) integrity and functionality are pivotal in modulating aqueous humor egress. Despite their potential significance in glaucomatous pathophysiology, the implications of microRNAs (miRNAs) on TM functionality remain largely enigmatic. Transcriptomic sequencing was employed to delineate the miRNA expression paradigm within the limbal region of rodent glaucoma models, aiming to elucidate miRNA-mediated mechanisms within the glaucomatous milieu. Analytical scrutiny of the sequencing data disclosed 174 miRNAs with altered expression profiles, partitioned into 86 miRNAs with augmented expression and 88 with diminished expression. Notably, miRNAs such as hsa-miR-196b-5p were identified as having substantial expression discrepancies with concomitant statistical robustness, suggesting a potential contributory role in glaucomatous progression. Subsequent in vitro assays affirmed that miR-196b-5p augments the inflammatory cascade within immortalized human TM (iHTM) and glaucoma-induced human TM (GTM3) cells, concurrently attenuating cellular proliferation, motility, and cytoskeletal architecture. Additionally, miR-196b-5p implicates itself in the regulation of IOP and inflammatory processes in rodent models. At a mechanistic level, miR-196b-5p modulates its effects via the targeted repression of Nras (neuroblastoma RAS viral oncogene homolog). Collectively, these transcriptomic investigations furnish a comprehensive vista into the regulatory roles of miRNAs within the glaucomatous framework, and the identification of differentially expressed miRNAs alongside their targets could potentially illuminate novel molecular pathways implicated in glaucoma, thereby aiding in the development of innovative therapeutic avenues.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xuejiao Yang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yao Zong
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| | - Xian Yang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
4
|
Lin X, Ma D, Yang J. Exploring anterion capsular contraction syndrome in cataract surgery: insights into pathogenesis, clinical course, influencing factors, and intervention approaches. Front Med (Lausanne) 2024; 11:1366576. [PMID: 38439904 PMCID: PMC10911763 DOI: 10.3389/fmed.2024.1366576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Anterior capsular contraction syndrome (ACCS) is a challenging complication that can occur following phacoemulsification cataract surgery. Characterized by capsular bag wrinkling, intraocular lens (IOL) decentration and tilt, ACCS can have negative effects on visual outcomes and patient satisfaction. This review aims to investigate the pathogenesis, clinical course, influencing factors, and intervention approaches for ACCS after cataract surgery. By understanding the underlying mechanisms and identifying factors that contribute to ACCS, surgeons can enhance their ability to predict and manage this complication. Various intervention strategies are discussed, highlighting their importance in reducing complications and improving surgical outcomes. However, further research is needed to determine optimal prevention and management strategies through long-term follow-up and comparative analyses. Advancements in this field will ultimately lead to improved visual outcomes and optimized cataract surgery for patients.
Collapse
Affiliation(s)
- Xuanqiao Lin
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key NHC Laboratory of Myopia, Fudan University, Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Dongmei Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key NHC Laboratory of Myopia, Fudan University, Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jin Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key NHC Laboratory of Myopia, Fudan University, Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
5
|
Wang JD, Zhang JS, Li XX, Wang KJ, Li M, Mao YY, Wan XH. Knockout of TGF-β receptor II by CRISPR/Cas9 delays mesenchymal transition of Lens epithelium and posterior capsule opacification. Int J Biol Macromol 2024; 259:129290. [PMID: 38199534 DOI: 10.1016/j.ijbiomac.2024.129290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Posterior capsule opacification (PCO) is the most common postoperative complication of cataract surgery. Transforming growth factor-β (TGF-β) is related to epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) that is proven to induce PCO formation in clinical and experimental studies. In this study, CRISPR sequences targeting exon of TGF-βRII were knocked out with lentiviral transfection in LECs. Rabbits' PCO model was established and recombinant adeno-associated virus (AAV) for transferring the gRNA of TGF βRII were intravitreally injected. SgRNA inhibited TGF-βRII expression and human LECs proliferation. In TGF-βRII knockout group, LECs motility and migration were suppressed, N-cadherin and vimentin expressions were significantly decreased, whereas E-cadherin was increased. The animal model showed that TGF-βRII knockout in vivo was effective in suppressing PCO. The current study suggested that the CRISPR/Cas9 endonuclease system could suppress TGF-βRII secretion, which participates in the EMT procedure of LECs in vitro and PCO in vivo. These findings might provide a new gene-editing approach and insight into a novel therapeutic strategy for PCO.
Collapse
Affiliation(s)
- Jin Da Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Jing Shang Zhang
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Xiao Xia Li
- Department of Ophthalmology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
| | - Kai Jie Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Meng Li
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Ying Yan Mao
- Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing 100730, China
| | - Xiu Hua Wan
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China.
| |
Collapse
|
6
|
Rad LM, Sadoughi MM, Nicknam A, Colagar AH, Hussen BM, Taheri M, Ghafouri-Fard S. The impact of non-coding RNAs in the pathobiology of eye disorders. Int J Biol Macromol 2023; 239:124245. [PMID: 37001772 DOI: 10.1016/j.ijbiomac.2023.124245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Eye disorders are common disorders with significant effects on personal, economic, and social aspects of life. These disorders have a genetic background and are associated with dysregulation of non-coding RNAs. Three classes of these transcripts, namely long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) have established roles in the regulation of gene expression and pathoetiology of ocular disorders. H19, MEG3, BANCR, UCA1, HOTAIR, ANRIL, XIST and MIAT are among important lncRNAs in ocular disorders. CircRNAs from ZBTB44, HIPK3, circ-PSEN1, COL1A2, ZNF532 and FAM158A loci have also been found to affect pathoetiology of ocular disorders. Both lncRNAs and circRNAs can serve as molecular sponges for miRNAs. In this review, we searched PubMed and Google Scholar databases to find the research articles summarizing the impact of non-coding RNAs in ocular disorders. The results of these studies would help in identification of suitable targets for treatment of ocular disorders.
Collapse
|
7
|
Chen S, Zhang C, Shen L, Hu J, Chen X, Yu Y. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream. Pharmacol Res 2022; 184:106417. [PMID: 36038044 DOI: 10.1016/j.phrs.2022.106417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
For decades, research on the pathological mechanism of cataracts has usually focused on the abnormal protein changes caused by a series of risk factors. However, an entire class of molecules, termed non-coding RNA (ncRNA), was discovered in recent years and proven to be heavily involved in cataract formation. Recent studies have recognized the key regulatory roles of ncRNAs in cataracts by shaping cellular activities such as proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). This review summarizes our current insight into the biogenesis, properties and functions of ncRNAs and then discusses the development of research on ncRNAs in cataracts. Considering the significant role of ncRNA in cataract formation, research on novel associated regulatory mechanisms is urgently needed, and the development of therapeutic alternatives for the treatment of cataracts seems promising.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Lifang Shen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
8
|
Liu D, Wu Q, Chen W, Chen K, Lin H, Liu F, Xie X, Chen HJ, Chen W. Nanoporous Gold Ring-Integrated Photothermal Intraocular Lens for Active Prevention of Posterior Capsular Opacification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201098. [PMID: 35796194 DOI: 10.1002/smll.202201098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Posterior capsular opacification (PCO) is the leading complication after cataract surgery, and is mainly induced by the proliferation and migration of residual lens epithelial cells (LECs). Although numerous attempts have been made to reduce the incidence of PCO, this complication remains a critical challenge in postoperative visual recovery. This study aims to report a functionalized intraocular lens (R-IOL) with a region-confined photothermal effect for the active prevention of PCO after implantation. The outer rim of R-IOL (non-optical area) is decorated with a nanoporous gold (NPG) ring, which can effectively eliminate the LECs around R-IOL, ultimately inhibiting the migration of LECs from the periphery to the visual axis center in the initial stage, and preventing the subsequent PCO. Furthermore, the mechanism of LECs elimination can be attributed to apoptosis induced by mild photothermal therapy. After in vivo implantation for 30 days, PCO is rarely observed in the R-IOL group, whereas the considerably higher incidence of PCO (75%) is found in the pristine IOL (P-IOL) group. The region-confined photothermal effect based on NPG not only provides an active strategy to effectively prevent PCO, but also introduces new opportunities for the treatment of undesirable hyperplasia.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Kexin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| |
Collapse
|
9
|
Guo M, Su F, Chen Y, Su B. Interfering Hsa_circRNA_0060640 Suppresses TGF-β2-Induced Proliferation, Motility and EMT in Human Lens Epithelium Cells by Targeting miR-214-3p and Collagen Type I alpha2 Chain. Curr Eye Res 2022; 47:735-746. [PMID: 35392747 DOI: 10.1080/02713683.2022.2053724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Circular RNA (circRNA) is a novel star factor in the research of ocular diseases including cataract and the most common postoperative complication posterior capsule opacification (PCO). Hsa_circRNA_0060640 (circ_0060640) is an age-related cataract-related circRNA. However, its role in cataractogenesis is unrevealed yet. METHODS PCO in vitro model was established in human lens epithelium cells (hLECs) induced by transforming growth factor-beta2 (TGF-β2). RNA and protein expressions were respectively detected by quantitative PCR and western blotting. Direct interaction between two RNAs was predicted by Starbase tool and confirmed by dual-luciferase reporter assay. MTS and EdU assays measured cell proliferation; Transwell, starch wound and western blotting assays evaluated cell motility and epithelial-mesenchymal transition (EMT). RESULTS Circ_0060640 expression is higher in anterior lens capsule tissues from human cataractous eyes and TGF-β2-stimulated hLECs cells line SRA01/04. RNA interference of circ_0060640 could prevent SRA01/04 cells from TGF-β2-induced cell proliferation, migration and invasion, accompanied with decreased N-cadherin and α-smooth muscle actin and increased E-cadherin. Mechanistically, circ_0060640 directly controls microRNA (miR)-214-3p expression and then regulates gene expression of collagen type I alpha2 chain (COL1A2). Notably, COL1A2 inhibition is underlying the protective role of circ_0060640 silencing and miR-214-3p ectopic expression in TGF-β2-stimulated SRA01/04 cells. CONCLUSION Circ_0060640 is a novel cataract-related gene and its silencing could block TGF-β2-evoked hLECs proliferation, motility and EMT in vitro via targeting miR-214-3p-COL1A2 axis. Therefore, targeting circ_0060640 via RNA interference might be a treatment strategy for PCO development.
Collapse
Affiliation(s)
- Ming Guo
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, China
| | - Fanfan Su
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, China
| | - Yao Chen
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, China
| | - Bo Su
- Department of Pathology, School of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
NIR-triggered drug delivery system for chemo-photothermal therapy of posterior capsule opacification. J Control Release 2021; 339:391-402. [PMID: 34563593 DOI: 10.1016/j.jconrel.2021.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022]
Abstract
Posterior capsule opacification (PCO) is the most common complication after cataract surgery and is likely to cause the second loss of vision. Pharmacological PCO prophylaxis has been proved to be effective, yet no clinical option is available due to the lack of a suitable mode of administration. In this work, we propose a unique concept of NIR dual-triggered drug release from black phosphorus (BP)-based implantable intraocular lens (IOL) for controlled drug release and chemo-photothermal combination therapy of PCO. Here, IOL is used as a "reservoir" of doxorubicin-loaded black phosphorus (BP-DOX), and BP is used as NIR activation agent for controlled drug release and photothermal therapy. This BP-DOX integrated IOL, namely BP-DOX@IOL, shows the characteristics of good transmittance, good mechanical property, NIR dual-triggered drug release behaviors, and excellent photothermal efficacy. In vivo studies reveal that there is no PCO occurrence in rabbits' model by using BP-DOX@IOL combined NIR irradiation, which exhibits distinct superiority on inhibiting PCO than the control group (100% PCO occurrence) 28 days post-surgery. This novel IOL drug delivery system would be a promising strategy for the future clinical application for PCO prophylaxis and treatment.
Collapse
|
11
|
He P, Zhang C, Chen G, Shen S. Loss of lncRNA SNHG8 promotes epithelial-mesenchymal transition by destabilizing CDH1 mRNA. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1858-1867. [PMID: 33754289 DOI: 10.1007/s11427-020-1895-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 10/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are widely involved in a variety of biological processes, including epithelial-mesenchymal transition (EMT). In the current study, we found that lncRNA small nucleolar RNA host gene 8 (SNHG8) was tightly correlated with EMT-associated gene signatures, and was down-regulated by Zinc finger E-box-binding homeobox 1 (ZEB1) during EMT progress. Functionally, knockdown of SNHG8 induced EMT in epithelial cells, through destabilizing the CDH1 mRNA dependent on a 17-nucleotide sequence shared by SNHG8 and CDH1. In addition, analysis with public database showed that SNHG8 tended to be down-regulated in different cancer types and the lower expression of SNHG8 predicted poorer prognosis. Taken together, our study reports a ZEB1-repressed lncRNA SNHG8 which is important for stabilizing CDH1 mRNA, thereby maintaining the epithelial status of epithelial cells.
Collapse
Affiliation(s)
- Ping He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shaoming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Research Progress of Drug Prophylaxis for Lens Capsule Opacification after Cataract Surgery. J Ophthalmol 2020; 2020:2181685. [PMID: 32714607 PMCID: PMC7355348 DOI: 10.1155/2020/2181685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Phacoemulsification combined with intraocular lens (IOL) implantation is the international standard operation procedure for cataract and has been generalized worldwide. However, lens capsule opacification, one of the common complications after cataract surgery, impacts the recovery of patients' visual function to a large extent. Lens capsule opacification has two types, anterior capsule opacification (ACO) and posterior capsule opacification (PCO), according to the location. There is not an accepted approach to treat ACO. Nd : YAG laser capsulotomy, the common treatment of PCO, can effectively improve the vision, but may cause a series of complications and is inappropriate for children who are too young to cooperate with this treatment. It is generally known that the responses of lens epithelial cells (LECs) after cataract surgery, including cell proliferation, migration, and epithelial-mesenchymal transition (EMT), play a key role in the pathogenesis of lens capsule opacification. Scholars found that substantial drugs can reduce the occurrence of lens capsule opacification by inhibiting, clearing, or killing LECs, and made great efforts as well as innovations on the exploration of drug species or modes of administration. This article is a systematic interpretation and elaboration about how to prevent lens capsule opacification after cataract surgery via different drugs.
Collapse
|
13
|
Recent developments in regenerative ophthalmology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1450-1490. [PMID: 32621058 DOI: 10.1007/s11427-019-1684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
Collapse
|