1
|
Tang YD, Yu C, Cai XH. Novel technologies are turning a dream into reality: conditionally replicating viruses as vaccines. Trends Microbiol 2024; 32:292-301. [PMID: 37798168 DOI: 10.1016/j.tim.2023.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023]
Abstract
Conditionally replicating viruses (CRVs) are a type of virus with one or more essential gene functions that are impaired resulting in the disruption of viral genome replication, protein synthesis, or virus particle assembly. CRVs can replicate only if the deficient essential genes are supplied. CRVs are widely used in biomedical research, particularly as vaccines. Traditionally, CRVs are generated by creating complementary cell lines that provide the impaired genes. With the development of biotechnology, novel techniques have been invented to generate CRVs, such as targeted protein degradation (TPD) technologies and premature termination codon (PTC) read-through technologies. The advantages and disadvantages of these novel technologies are discussed. Finally, we provide perspectives on what challenges need to be overcome for CRVs to reach the market.
Collapse
Affiliation(s)
- Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China.
| | - Changqing Yu
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China.
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China.
| |
Collapse
|
2
|
Wang TY, Meng FD, Sang GJ, Zhang HL, Tian ZJ, Zheng H, Cai XH, Tang YD. A novel viral vaccine platform based on engineered transfer RNA. Emerg Microbes Infect 2023; 12:2157339. [PMID: 36482724 PMCID: PMC9769134 DOI: 10.1080/22221751.2022.2157339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, an increasing number of emerging and remerging virus outbreaks have occurred and the rapid development of vaccines against these viruses has been crucial. Controlling the replication of premature termination codon (PTC)-containing viruses is a promising approach to generate live but replication-defective viruses that can be used for potent vaccines. Here, we used anticodon-engineered transfer RNAs (ACE-tRNAs) as powerful precision switches to control the replication of PTC-containing viruses. We showed that ACE-tRNAs display higher potency of reading through PTCs than genetic code expansion (GCE) technology. Interestingly, ACE-tRNA has a site preference that may influence its read-through efficacy. We further attempted to use ACE-tRNAs as a novel viral vaccine platform. Using a human immunodeficiency virus type 1 (HIV-1) pseudotyped virus as an RNA virus model, we found that ACE-tRNAs display high potency for read-through viral PTCs and precisely control their production. Pseudorabies virus (PRV), a herpesvirus, was used as a DNA virus model. We found that ACE-tRNAs display high potency for reading through viral PTCs and precisely controlling PTC-containing virus replication. In addition, PTC-engineered PRV completely attenuated and lost virulence in mice in vivo, and immunization with PRV containing a PTC elicited a robust immune response and provided complete protection against wild-type PRV challenge. Overall, replication-controllable PTC-containing viruses based on ACE-tRNAs provide a new strategy to rapidly attenuate virus infection and prime robust immune responses. This technology can be used as a platform for rapidly developing viral vaccines in the future.
Collapse
Affiliation(s)
- Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, People's Republic of China
| | - Fan-Dan Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, People's Republic of China
| | - Guo-Ju Sang
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, People's Republic of China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hao Zheng
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China,Hao Zheng Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai150001, People’s Republic of China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, People's Republic of China,Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, People's Republic of China,Xue-Hui Cai State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, People’s Republic of China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin150001, People’s Republic of China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, People's Republic of China, Yan-Dong Tang
| |
Collapse
|
3
|
Xue W, Li T, Gu Y, Li S, Xia N. Molecular engineering tools for the development of vaccines against infectious diseases: current status and future directions. Expert Rev Vaccines 2023. [PMID: 37339445 DOI: 10.1080/14760584.2023.2227699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The escalating global changes have fostered conditions for the expansion and transmission of diverse biological factors, leading to the rise of emerging and reemerging infectious diseases. Complex viral infections, such as COVID-19, influenza, HIV, and Ebola, continue to surface, necessitating the development of effective vaccine technologies. AREAS COVERED This review article highlights recent advancements in molecular biology, virology, and genomics that have propelled the design and development of innovative molecular tools. These tools have promoted new vaccine research platforms and directly improved vaccine efficacy. The review summarizes the cutting-edge molecular engineering tools used in creating novel vaccines and explores the rapidly expanding molecular tools landscape and potential directions for future vaccine development. EXPERT OPINION The strategic application of advanced molecular engineering tools can address conventional vaccine limitations, enhance the overall efficacy of vaccine products, promote diversification in vaccine platforms, and form the foundation for future vaccine development. Prioritizing safety considerations of these novel molecular tools during vaccine development is crucial.
Collapse
Affiliation(s)
- Wenhui Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, China
| |
Collapse
|
4
|
Generation of Premature Termination Codon (PTC)-Harboring Pseudorabies Virus (PRV) via Genetic Code Expansion Technology. Viruses 2022; 14:v14030572. [PMID: 35336979 PMCID: PMC8950157 DOI: 10.3390/v14030572] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Despite many efforts and diverse approaches, developing an effective herpesvirus vaccine remains a great challenge. Traditional inactivated and live-attenuated vaccines always raise efficacy or safety concerns. This study used Pseudorabies virus (PRV), a swine herpes virus, as a model. We attempted to develop a live but replication-incompetent PRV by genetic code expansion (GCE) technology. Premature termination codon (PTC) harboring PRV was successfully rescued in the presence of orthogonal system MbpylRS/tRNAPyl pair and unnatural amino acids (UAA). However, UAA incorporating efficacy seemed extremely low in our engineered PRV PTC virus. Furthermore, we failed to establish a stable transgenic cell line containing orthogonal translation machinery for PTC virus replication, and we demonstrated that orthogonal tRNAPyl is a key limiting factor. This study is the first to demonstrate that orthogonal translation system-mediated amber codon suppression strategy could precisely control PRV-PTC engineered virus replication. To our knowledge, this is the first reported PTC herpesvirus generated by GCE technology. Our work provides a proof-of-concept for generating UAAs-controlled PRV-PTC virus, which can be used as a safe and effective vaccine.
Collapse
|
5
|
Hao R, Ma K, Ru Y, Li D, Song G, Lu B, Liu H, Li Y, Zhang J, Wu C, Zhang G, Hu H, Luo J, Zheng H. Amber codon is genetically unstable in generation of premature termination codon (PTC)-harbouring Foot-and-mouth disease virus (FMDV) via genetic code expansion. RNA Biol 2021; 18:2330-2341. [PMID: 33849391 DOI: 10.1080/15476286.2021.1907055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The foot-and-mouth disease virus (FMDV) is the causative agent of FMD, a highly infectious and devastating viral disease of domestic and wild cloven-hoofed animals. FMD affects livestock and animal products' national and international trade, causing severe economic losses and social consequences. Currently, inactivated vaccines play a vital role in FMD control, but they have several limitations. The genetic code expansion technology provides powerful strategies for generating premature termination codon (PTC)-harbouring virus as a live but replication-incompetent viral vaccine. However, this technology has not been explored for the design and development of new FMD vaccines. In this study, we first expanded the genetic code of the FMDV genome via a transgenic cell line containing an orthogonal translation machinery. We demonstrated that the transgenic cells stably integrated the orthogonal pyltRNA/pylRS pair into the genome and enabled efficient, homogeneous incorporation of unnatural amino acids into target proteins in mammalian cells. Next, we constructed 129 single-PTC FMDV mutants and four dual-PTC FMDV mutants after considering the tolerance, location, and potential functions of those mutated sites. Amber stop codons individually substituted the selected amino acid codons in four viral proteins (3D, L, VP1, and VP4) of FMDV. We successfully rescued PTC-FMDV mutants, but the amber codon unexpectedly showed a highly degree of mutation rate during PTC-FMDV packaging and replication. Our findings highlight that the genetic code expansion technology for the generation of PTC-FMD vaccines needs to be further improved and that the genetic stability of amber codons during the packaging and replication of FMDV is a concern.
Collapse
Affiliation(s)
- Rongzeng Hao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kun Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Gaoyuan Song
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bingzhou Lu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yajun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiaoyan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunping Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guicai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haitao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|