1
|
Azmin M, Habibie H, Filmaharani F, Roosevelt A, Nurhidayah A, Pratama MR, Hardiyanti W, Latada NP, Mudjahid M, Yuliana D, Nainu F. Aspirin-Mediated Reduction of Glucose Level and Inflammation in Drosophila melanogaster. ACS OMEGA 2025; 10:18622-18628. [PMID: 40385166 PMCID: PMC12079274 DOI: 10.1021/acsomega.4c11509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Diabetes mellitus (DM), particularly type 2 diabetes mellitus (T2DM), is a global health challenge marked by chronic hyperglycemia and inflammation, which contributes to both metabolic dysregulation and associated complications. Inflammation exacerbates T2DM by activating immune signaling pathways and promoting insulin resistance. This study aims to investigate the interplay between hyperglycemia and inflammation and to explore the therapeutic potential of aspirin in mitigating these processes using Drosophila melanogaster as a model organism. We utilized the PGRP-LB Δ strain, which exhibits dysregulated immune responses due to the loss of the PGRP-LB gene, leading to a phenotype resembling human autoinflammatory conditions. Larvae of the PGRP-LB Δ were fed a high-sucrose diet to induce increased glucose levels, mimicking the metabolic disturbances of T2DM. Aspirin, at different concentrations, was administered to assess its effects on high glucose level-induced inflammation. The results demonstrated that aspirin significantly improved hemolymph glucose levels, larval size, weight, and development. Additionally, aspirin enhanced larval mobility and reduced glucose level-associated immune dysfunction, as evidenced by changes in the expression of key immune and insulin-related genes. These findings highlight the utility of D. melanogaster as an effective and cost-efficient model to investigate the molecular mechanisms of T2DM and inflammation. The study also provides preliminary evidence for the potential of aspirin as an anti-inflammatory agent to modulate glucose levels and inflammation in T2DM, offering a promising avenue for therapeutic development.
Collapse
Affiliation(s)
- Muhammad
Rayza Azmin
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Habibie Habibie
- Department
of Pharmacy, Faculty of Pharmacy, Hasanuddin
University, Tamalanrea, Makassar 90245, Indonesia
| | - Filmaharani Filmaharani
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Alfreds Roosevelt
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Anggun Nurhidayah
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Muhammad Rasul Pratama
- Unhas
Fly Research Group, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Widya Hardiyanti
- Unhas
Fly Research Group, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Nadila Pratiwi Latada
- Unhas
Fly Research Group, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Mukarram Mudjahid
- Department
of Pharmacy, Faculty of Pharmacy, Hasanuddin
University, Tamalanrea, Makassar 90245, Indonesia
| | - Dewi Yuliana
- Faculty
of Pharmacy, Universitas Muslim Indonesia, Panakukang, Makassar 90231, Indonesia
| | - Firzan Nainu
- Department
of Pharmacy, Faculty of Pharmacy, Hasanuddin
University, Tamalanrea, Makassar 90245, Indonesia
- Unhas
Fly Research Group, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| |
Collapse
|
2
|
Montaser O, El-Aasr M, Tawfik HO, Meshrif WS, Elbrense H. Drosophila melanogaster as a model organism for diabetes II treatment by the ethyl acetate fraction of Atriplex halimus L. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:702-716. [PMID: 38623920 DOI: 10.1002/jez.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Type 2 diabetes (T2D) is the most common metabolic disorder. The undesirable effects of synthetic drugs demand a search for safe antidiabetic agents. This study aimed to assess the antidiabetic activity of different fractions of Atriplex halimus (petroleum ether 60-80, methylene chloride, ethyl acetate, and n-butanol) using Drosophila melanogaster larvae. Titers of total glucose and trehalose, as well as larval weight, were measured and compared with those of control and diabetic larvae. The expression of Drosophila insulin-like peptides (DILP2 and DILP3) and adipokinetic hormone (AKH) was evaluated. The results revealed a significant increase in total glucose, trehalose, and a decrease in body weight in the larvae fed a high-sugar diet compared with those in the control. When larvae fed diets containing the tested fractions, the total glucose and trehalose decreased to the control level, and the body weight increased. DILP2, DILP3, and AKH exhibited significant decreases upon treatment with A. halimus ethyl acetate. Metabolomic profiling of the ethyl acetate fraction of A. halimus revealed the presence of flavonoids and flavonoid glycosides. After docking screening to predict the most powerful moiety, we discovered that flavonoid glycosides (especially eriodictyol-7-O-neohesperidoside) have a greater affinity for the pocket than the other moieties. The results indicated the therapeutic activity of the A. halimus ethyl acetate fraction against induced T2D in Drosophila larvae. The antidiabetic activity may be attributed to flavonoids, which are the main components of the A. halimus ethyl acetate fraction.
Collapse
Affiliation(s)
- Omnia Montaser
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Wesam S Meshrif
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hanaa Elbrense
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Yang J, Tang R, Chen S, Chen Y, Yuan K, Huang R, Wang L. Exposure to high-sugar diet induces transgenerational changes in sweet sensitivity and feeding behavior via H3K27me3 reprogramming. eLife 2023; 12:e85365. [PMID: 37698486 PMCID: PMC10558205 DOI: 10.7554/elife.85365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Human health is facing a host of new threats linked to unbalanced diets, including high-sugar diet (HSD), which contributes to the development of both metabolic and behavioral disorders. Studies have shown that diet-induced metabolic dysfunctions can be transmitted to multiple generations of offspring and exert long-lasting health burden. Meanwhile, whether and how diet-induced behavioral abnormalities can be transmitted to the offspring remains largely unclear. Here, we showed that ancestral HSD exposure suppressed sweet sensitivity and feeding behavior in the offspring in Drosophila. These behavioral deficits were transmitted through the maternal germline and companied by the enhancement of H3K27me3 modifications. PCL-PRC2 complex, a major driver of H3K27 trimethylation, was upregulated by ancestral HSD exposure, and disrupting its activity eliminated the transgenerational inheritance of sweet sensitivity and feeding behavior deficits. Elevated H3K27me3 inhibited the expression of a transcriptional factor Cad and suppressed sweet sensitivity of the sweet-sensing gustatory neurons, reshaping the sweet perception and feeding behavior of the offspring. Taken together, we uncovered a novel molecular mechanism underlying behavioral abnormalities spanning multiple generations of offspring upon ancestral HSD exposure, which would contribute to the further understanding of long-term health risk of unbalanced diet.
Collapse
Affiliation(s)
- Jie Yang
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Shiye Chen
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Yinan Chen
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
- The Biobank of Xiangya Hospital, Xiangya Hospital, Central South UniversityChangshaChina
| | - Rui Huang
- Center for Neurointelligence, School of Medicine, Chongqing UniversityChongqingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Liming Wang
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
4
|
Liu H, Li J, Chang X, He F, Ma J. Modeling Obesity-Associated Ovarian Dysfunction in Drosophila. Nutrients 2022; 14:nu14245365. [PMID: 36558524 PMCID: PMC9783805 DOI: 10.3390/nu14245365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
We perform quantitative studies to investigate the effect of high-calorie diet on Drosophila oogenesis. We use the central composite design (CCD) method to obtain quadratic regression models of body fat and fertility as a function of the concentrations of protein and sucrose, two major macronutrients in Drosophila diet, and treatment duration. Our results reveal complex interactions between sucrose and protein in impacting body fat and fertility when they are considered as an integrated physiological response. We verify the utility of our quantitative modeling approach by experimentally confirming the physiological responses-including increased body fat, reduced fertility, and ovarian insulin insensitivity-expected of a treatment condition identified by our modeling method. Under this treatment condition, we uncover a Drosophila oogenesis phenotype that exhibits an accumulation of immature oocytes and a halt in the production of mature oocytes, a phenotype that bears resemblance to key aspects of the human condition of polycystic ovary syndrome (PCOS). Our analysis of the dynamic progression of different aspects of diet-induced pathophysiology also suggests an order of the onset timing for obesity, ovarian dysfunction, and insulin resistance. Thus, our study documents the utility of quantitative modeling approaches toward understanding the biology of Drosophila female reproduction, in relation to diet-induced obesity and type II diabetes, serving as a potential disease model for human ovarian dysfunction.
Collapse
Affiliation(s)
- Huanju Liu
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
| | - Jiajun Li
- ZJU-UOE Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Xinyue Chang
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
| | - Feng He
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
- Correspondence: (F.H.); (J.M.)
| | - Jun Ma
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
- Women’s Reproductive Health Research Laboratory of Zhejiang Province, Hangzhou 310006, China
- Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou 310058, China
- Correspondence: (F.H.); (J.M.)
| |
Collapse
|
5
|
Wen Y, Liu Y, Huang Q, Farag MA, Li X, Wan X, Zhao C. Nutritional assessment models for diabetes and aging. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yuanyuan Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Qihui Huang
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Department of Analytical and Food Chemistry Universidade de Vigo, Nutrition and Bromatology Group, Faculty of Sciences Ourense Spain
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | - Xiaoqing Li
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Xuzhi Wan
- College of Biosystem Engineering and Food Science Zhejiang University Hangzhou China
| | - Chao Zhao
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
6
|
Meshrif WS, El Husseiny IM, Elbrense H. Drosophila melanogaster as a low-cost and valuable model for studying type 2 diabetes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:457-466. [PMID: 35189046 DOI: 10.1002/jez.2580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Drosophila melanogaster has been used as the most successful invertebrate model for studying metabolic diseases such as type 2 diabetes (T2D). We induced T2D by feeding Drosophila larvae on a high-sugar diet (HSD). The glucose and trehalose, glycogen, lipid, triglyceride, and protein levels were determined in HSD-fed larvae. Moreover, larval food intake, water content, size, and weight in addition to the development until pupation were observed. Levels of Drosophila insulin-like peptides (DILPs 2, 3, and 5), as well as adipokinetic hormone (AKH), were also determined in HSD-fed larvae by quantitative real-time polymerase chain reaction. The results demonstrated that HSD could induce elevated levels of glucose, trehalose, glycogen, and proteins in larvae. The larvae consumed less food intake and were smaller, lighter, and less developed on HSD than those on the control diet. Moreover, the water content of larvae fed HSD was similar to that fed the control diet. HSD induced higher expression of DILP3 and AKH, confirming hyperglycemia with insulin resistance. In sum, Drosophila offers an appropriate model for quick and inexpensive in vivo experimentation on human metabolic diseases.
Collapse
Affiliation(s)
- Wesam S Meshrif
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Iman M El Husseiny
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hanaa Elbrense
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Nakitto AMS, Rudloff S, Borsch C, Wagner AE. Solanum anguivi Lam. fruit preparations counteract the negative effects of a high-sugar diet on the glucose metabolism in Drosophila melanogaster. Food Funct 2021; 12:9238-9247. [PMID: 34606536 DOI: 10.1039/d1fo01363g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Solanum anguivi Lam. fruits (SALF) are traditionally consumed as a remedy for type 2 diabetes mellitus (T2DM). However, data regarding the potential anti-diabetic effect of SALF and its underlying mechanisms are scarce. As the fruit fly's energy metabolism has been suggested to be comparable with mammals including the secretion of insulin-like peptides, we fed Drosophila melanogaster a high-sugar diet (HSD) to induce a T2DM-like phenotype and subsequently exposed them to a HSD supplemented with SALF. Following, flies were analyzed for various biomarkers in relation to energy metabolism. The HSD-induced glucose levels were significantly down-regulated in flies exposed to a HSD supplemented with SALF. In addition, flies exposed to SALF-supplemented HSD exhibited a better survival in comparison to HSD-fed counterparts. Other parameters of the energy metabolism such as triglyceride levels, weights, and fitness were not affected by SALF supplementation. This was also true for the expression levels of the insulin-like-peptides 3 and 6 as well as for spargel, the Drosophila homolog of PPARγ-co-activator 1α, a central player in mitochondrial biogenesis. Overall, the present study shows that SALF significantly lowered the HSD-induced glucose levels and increased the survival while the biomarkers of the energy metabolism were not affected.
Collapse
Affiliation(s)
- Aisha Musaazi Sebunya Nakitto
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Wilhelmstrasse 20, 35392 Giessen, Germany. .,Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Silvia Rudloff
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Wilhelmstrasse 20, 35392 Giessen, Germany.
| | - Christian Borsch
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Wilhelmstrasse 20, 35392 Giessen, Germany.
| | - Anika E Wagner
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Wilhelmstrasse 20, 35392 Giessen, Germany.
| |
Collapse
|