1
|
Zhang S, Wang T, Gao T, Liao J, Wang Y, Xu M, Lu C, Liang J, Xu Z, Sun J, Xie Q, Lin Z, Han H. Imaging probes for the detection of brain microenvironment. Colloids Surf B Biointerfaces 2025; 252:114677. [PMID: 40215639 DOI: 10.1016/j.colsurfb.2025.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 05/18/2025]
Abstract
The brain microenvironment (BME) is a highly dynamic system that plays a critical role in neural excitation, signal transmission, development, aging, and neurological disorders. BME consists of three key components: neural cells, extracellular spaces, and physical fields, which provide structures and physicochemical properties to synergistically and antagonistically regulate cell behaviors and functions such as nutrient transport, waste metabolism and intercellular communication. Consequently, monitoring the BME is vital to acquire a better understanding of the maintenance of neural homeostasis and the mechanisms underlying neurological diseases. In recent years, researchers have developed a range of imaging probes designed to detect changes in the microenvironment, enabling precise measurements of structural and biophysical parameters in the brain. This advancement aids in the development of improved diagnostic and therapeutic strategies for brain disorders and in the exploration of cutting-edge mechanisms in neuroscience. This review summarizes and highlights recent advances in the probes for sensing and imaging BME. Also, we discuss the design principles, types, applications, challenges, and future directions of probes.
Collapse
Affiliation(s)
- Shiming Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Tianyu Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Tianzi Gao
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Jun Liao
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Meng Xu
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Changyu Lu
- Department of Neurosurgery, Peking University International Hospital, Beijing 102206, PR China
| | - Jianfeng Liang
- Department of Neurosurgery, Peking University International Hospital, Beijing 102206, PR China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Qian Xie
- Division of Nephrology, Peking University Third Hospital, Beijing 100096, PR China.
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Department of Radiology, Peking University Third Hospital, Beijing 100096, PR China.
| |
Collapse
|
2
|
Shang K, Xu C, Cao Z, Cui M, Sun J, Xiao H, Zhang L, Wang Y, Han H. Polymer-based delivery systems with metal complexes as contrast agents for medical imaging. Coord Chem Rev 2024; 518:216071. [DOI: 10.1016/j.ccr.2024.216071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Lian J, Yang L, Tan H, Su S, Serrano Lopes L, Cheng F, Yan J, Fu Y, Fu W, Xie Z, Sun J, Zhang J, Tong Z, Gao Y, Han H. A novel neuroprotective method against ischemic stroke by accelerating the drainage of brain interstitial fluid. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2213-2223. [PMID: 39115728 DOI: 10.1007/s11427-024-2592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/12/2024] [Indexed: 10/15/2024]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Inflammatory response after stroke determines the outcome of ischemic injury. A recent study has reported an efficient method, epidural arterial implantation (EAI), for accelerating interstitial fluid (ISF) drainage, which provides a promising strategy to clear pro-inflammatory cytokines in the brain extracellular space (ECS). In this study, the method of EAI was modified (m-EAI) to control its function of accelerating the ISF drainage at different time points following ischemic attack. The neuroprotective effect of m-EAI on ischemic stroke was evaluated with the transient middle cerebral artery occlusion (tMCAO) rat model. The results demonstrated the accumulation of IL-1β, IL-6, and TNF-α was significantly decreased by activating m-EAI at 7 d before and immediately after ischemic attack in tMCAO rats, accompanied with decreased infarct volume and improved neurological function. This study consolidates the hypothesis of exacerbated ischemic damage by inflammatory response and provides a new perspective to treat encephalopathy via brain ECS. Further research is essential to investigate whether m-EAI combined with neuroprotective drugs could enhance the therapeutic effect on ischemic stroke.
Collapse
Affiliation(s)
- Jingge Lian
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Liu Yang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Hanbo Tan
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Shaoyi Su
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Leonor Serrano Lopes
- Department of Informatics, Technical University of Munich, Garching, 80539, Germany
| | - Fangxiao Cheng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - Wanyi Fu
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhaoheng Xie
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
- NMPA Key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, 100191, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
5
|
Gao Y, Wang Y, Lu J, Lian J, Yang L, Liu J, Wang A, He Q, Han H. Dynamic changes in brain glymphatic function during preoperative chemotherapy in breast cancer patients. J Cancer Res Ther 2024; 20:1306-1313. [PMID: 39206993 DOI: 10.4103/jcrt.jcrt_517_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The current study aimed to investigate the dynamic changes in brain glymphatic function during chemotherapy in breast cancer patients (BCP) and their correlation with cognitive function. MATERIALS AND METHODS A total of 40 healthy female participants (control group) and 80 female BCP were included. Various cognitive assessment tools were used to evaluate cognitive function. Diffusion tensor imaging along the perivascular space was employed to measure brain glymphatic function. RESULTS Following chemotherapy, BCP exhibited a significant decline in various cognitive scores. After chemotherapy, the along the perivascular space index, a parameter indicating brain glymphatic function, was slightly higher than that at baseline and the control group levels and was correlated with cognitive scores. CONCLUSION This study unveiled a close relationship between the dynamic changes in brain glymphatic function after chemotherapy and cognitive function in BCP. Our findings contribute to a deeper understanding of the brain mechanisms underlying chemotherapy-related cognitive impairment and provide a theoretical basis for future interventions and treatments. In addition, they offer a new perspective for exploring the relationship between brain function and cognitive states.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Jiabin Lu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Jingge Lian
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Liu Yang
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Jing Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Aibo Wang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
7
|
Xie J, Li H, Su S, Cheng J, Cai Q, Tan H, Zu L, Qu X, Han H. Quantitative analysis of molecular transport in the extracellular space using physics-informed neural network. Comput Biol Med 2024; 171:108133. [PMID: 38364661 DOI: 10.1016/j.compbiomed.2024.108133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
The brain extracellular space (ECS), an irregular, extremely tortuous nanoscale space located between cells or between cells and blood vessels, is crucial for nerve cell survival. It plays a pivotal role in high-level brain functions such as memory, emotion, and sensation. However, the specific form of molecular transport within the ECS remain elusive. To address this challenge, this paper proposes a novel approach to quantitatively analyze the molecular transport within the ECS by solving an inverse problem derived from the advection-diffusion equation (ADE) using a physics-informed neural network (PINN). PINN provides a streamlined solution to the ADE without the need for intricate mathematical formulations or grid settings. Additionally, the optimization of PINN facilitates the automatic computation of the diffusion coefficient governing long-term molecule transport and the velocity of molecules driven by advection. Consequently, the proposed method allows for the quantitative analysis and identification of the specific pattern of molecular transport within the ECS through the calculation of the Péclet number. Experimental validation on two datasets of magnetic resonance images (MRIs) captured at different time points showcases the effectiveness of the proposed method. Notably, our simulations reveal identical molecular transport patterns between datasets representing rats with tracer injected into the same brain region. These findings highlight the potential of PINN as a promising tool for comprehensively exploring molecular transport within the ECS.
Collapse
Affiliation(s)
- Jiayi Xie
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Hongfeng Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Shaoyi Su
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Jin Cheng
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Qingrui Cai
- National Integrated Circuit Industry Education Integration Innovation Platform, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361102, China; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361102, China
| | - Hanbo Tan
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Lingyun Zu
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xiaobo Qu
- National Integrated Circuit Industry Education Integration Innovation Platform, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361102, China; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361102, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Radiology, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital, Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Beijing 100191, China; NMPA key Laboratory of Evaluation of Medical Imaging Equipment and Technique, Beijing 100191, China.
| |
Collapse
|
8
|
Cai X, He Q, Wang W, Li C, Wang H, Yin F, Li T, Kong D, Jia Y, Li H, Yan J, Wei X, Ren Q, Gao Y, Yang S, Tong H, Peng Y, Han H. Epidural Pulsation Accelerates the Drainage of Brain Interstitial Fluid. Aging Dis 2023; 14:219-228. [PMID: 36818558 PMCID: PMC9937704 DOI: 10.14336/ad.2022.0609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 11/01/2022] Open
Abstract
Unhindered transportation of substances in the brain extracellular space (ECS) is essential for maintaining brain function. Regulation of transportation is a novel strategy for treating ECS blockage-related brain diseases, but few techniques have been developed to date. In this study, we established a novel approach for accelerating the drainage of brain interstitial fluid (ISF) in the ECS using minimally invasive surgery, in which a branch of the external carotid artery is separated and implanted epidurally (i.e., epidural arterial implantation [EAI]) to promote a pulsation effect on cerebrospinal fluid (CSF) in the frontoparietal region. Tracer-based magnetic resonance imaging was used to evaluate the changes in ISF drainage in rats 7 and 15 days post-EAI. The drainage of the traced ISF from the caudate nucleus to ipsilateral cortex was significantly accelerated by EAI. Significant increases in the volume fraction of the ECS and molecular diffusion rate were demonstrated using the DECS-mapping technique, which may account for the mechanisms underlying the changes in brain ISF. This study provides a novel perspective for encephalopathy treatment via the brain ECS.
Collapse
Affiliation(s)
- Xianjie Cai
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China.
| | - Wei Wang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
| | - Hui Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Feng Yin
- Department of Neurosurgery, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, China.
| | - Tong Li
- Department of Neurosurgery, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, China.
| | - Dongsheng Kong
- Department of Neurosurgery, First Medical Center, General Hospital of Chinese PLA, Beijing, China.
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hongfeng Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Xunbin Wei
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Qiushi Ren
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Shuangfeng Yang
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Huaiyu Tong
- Department of Neurosurgery, First Medical Center, General Hospital of Chinese PLA, Beijing, China.,Correspondence should be addressed to: Dr. Hongbin Han, Peking University Third Hospital, Beijing, China. ; Dr. Huaiyu Tong, First Medical Center, General Hospital of Chinese PLA, Beijing, China. , Dr. Yun Peng, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China. .
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Correspondence should be addressed to: Dr. Hongbin Han, Peking University Third Hospital, Beijing, China. ; Dr. Huaiyu Tong, First Medical Center, General Hospital of Chinese PLA, Beijing, China. , Dr. Yun Peng, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China. .
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China.,Correspondence should be addressed to: Dr. Hongbin Han, Peking University Third Hospital, Beijing, China. ; Dr. Huaiyu Tong, First Medical Center, General Hospital of Chinese PLA, Beijing, China. , Dr. Yun Peng, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China. .
| |
Collapse
|
9
|
Abulikemu N, Gao X, Wang W, He Q, Wang G, Jiang T, Wang X, Cheng Y, Chen M, Li Y, Liu L, Zhao J, Li J, Jiang C, Wang Y, Han H, Wang J. Mechanism of extracellular space changes in cryptococcal brain granuloma revealed by MRI tracer. Front Neurosci 2022; 16:1034091. [PMID: 36605557 PMCID: PMC9808069 DOI: 10.3389/fnins.2022.1034091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the changes in extracellular space (ECS) in cryptococcal brain granuloma and its pathological mechanism. Materials and methods The animal model of cryptococcal brain granuloma was established by injecting 1 × 106 CFU/ml of Cryptococcus neoformans type A suspension into the caudate nucleus of Sprague-Dawley rats with stereotactic technology. The infection in the brain was observed by conventional MRI scanning on days 14, 21, and 28 of modeling. The tracer-based MRI with a gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) as a magnetic tracer was performed on the rats with cryptococcal granuloma and the rats in the control group. The parameters of ECS in each area of cryptococcal brain granuloma were measured. The parameters of ECS in the two groups were compared by independent sample t-test, and the changes in ECS and its mechanism were analyzed. Results Up to 28 days of modeling, the success rate of establishing the brain cryptococcal granuloma model with 1 × 106 CFU/ml Cryptococcus neoformans suspension was 60%. In the internal area of cryptococcal granuloma, the effective diffusion coefficient D* was significantly higher than that of the control group (t = 2.76, P < 0.05), and the same trend showed in the volume ratio α (t = 3.71, P < 0.05), the clearance rate constant k (t = 3.137, P < 0.05), and the tracer half-life T1/2 (t = 3.837, P < 0.05). The tortuosity λ decreased compared with the control group (t = -2.70, P < 0.05). At the edge of the cryptococcal granuloma, the D* and α decreased, while the λ increased compared with the control group (D*:t = -6.05, P < 0.05; α: t = -4.988, P < 0.05; λ: t = 6.222, P < 0.05). Conclusion The internal area of the lesion demonstrated a quicker, broader, and more extended distribution of the tracer, while the edge of the lesion exhibited a slower and narrower distribution. MRI tracer method can monitor morphological and functional changes of ECS in pathological conditions and provide a theoretical basis for the treatment via ECS.
Collapse
Affiliation(s)
- Nuerbiyemu Abulikemu
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai, China
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Qingyuan He
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Gang Wang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Imaging Center, Xi’an Gem Flower Changqing Hospital, Xi’an, China
| | - Tao Jiang
- The Animal Experimental Center, Xinjiang Medical University, Ürümqi, China
| | - Xiaodong Wang
- Department of Dermatology, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yumeng Cheng
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yanran Li
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Lulu Liu
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jingjing Zhao
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jin Li
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Chunhui Jiang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yunling Wang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Hongbin Han
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China,Department of Radiology, Peking University Third Hospital, Beijing, China,Hongbin Han,
| | - Jian Wang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai, China,*Correspondence: Jian Wang,
| |
Collapse
|
10
|
Yang N, Liu F, Zhang X, Chen C, Xia Z, Fu S, Wang J, Xu J, Cui S, Zhang Y, Yi M, Wan Y, Li Q, Xu S. A Hybrid Titanium-Softmaterial, High-Strength, Transparent Cranial Window for Transcranial Injection and Neuroimaging. BIOSENSORS 2022; 12:bios12020129. [PMID: 35200389 PMCID: PMC8870569 DOI: 10.3390/bios12020129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 05/04/2023]
Abstract
A transparent and penetrable cranial window is essential for neuroimaging, transcranial injection and comprehensive understanding of cortical functions. For these applications, cranial windows made from glass coverslip, polydimethylsiloxane (PDMS), polymethylmethacrylate, crystal and silicone hydrogel have offered remarkable convenience. However, there is a lack of high-strength, high-transparency, penetrable cranial window with clinical application potential. We engineer high-strength hybrid Titanium-PDMS (Ti-PDMS) cranial windows, which allow large transparent area for in vivo two-photon imaging, and provide a soft window for transcranial injection. Laser scanning and 3D printing techniques are used to match the hybrid cranial window to different skull morphology. A multi-cycle degassing pouring process ensures a good combination of PDMS and Ti frame. Ti-PDMS cranial windows have a high fracture strength matching human skull bone, excellent light transmittance up to 94.4%, and refractive index close to biological tissue. Ti-PDMS cranial windows show excellent bio-compatibility during 21-week implantation in mice. Dye injection shows that the PDMS window has a "self-sealing" to keep liquid from leaking out. Two-photon imaging for brain tissues could be achieved up to 450 µm in z-depth. As a novel brain-computer-interface, this Ti-PDMS device offers an alternative choice for in vivo drug delivery, optical experiments, ultrasonic treatment and electrophysiology recording.
Collapse
Affiliation(s)
- Nana Yang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
| | - Fengyu Liu
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
- Correspondence: (F.L.); (S.X.)
| | - Xinyue Zhang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (X.Z.); (Q.L.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Chenni Chen
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Zhiyuan Xia
- Department of Material Science and Engineering, College of Engineering, Peking University, Beijing 100871, China;
| | - Su Fu
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jiaxin Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jingjing Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Shuang Cui
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Yong Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Ming Yi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - You Wan
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (X.Z.); (Q.L.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Shengyong Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
- Correspondence: (F.L.); (S.X.)
| |
Collapse
|
11
|
Kou Y, Zhao H, Cui D, Han H, Tong Z. Formaldehyde toxicity in age-related neurological dementia. Ageing Res Rev 2022; 73:101512. [PMID: 34798299 DOI: 10.1016/j.arr.2021.101512] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023]
Abstract
The primordial small gaseous molecules, such as: NO, CO, H2S and formaldehyde (FA) are present in the brains. Whether FA as well as the other molecules participates in brain functions is unclear. Recently, its pathophysiological functions have been investigated. Notably, under physiological conditions, learning activity induces a transient generation of hippocampal FA, which promotes memory formation by enhancing N-methyl-D-aspartate (NMDA)-currents. However, ageing leads to FA accumulation in brain for the dysregulation of FA metabolism; and excessive FA directly impairs memory by inhibiting NMDA-receptor. Especially, in Alzheimer's disease (AD), amyloid-beta (Aβ) accelerates FA accumulation by inactivating alcohol dehydrogenase-5; in turn, FA promotes Aβ oligomerization, fibrillation and tau hyperphosphorylation. Hence, there is a vicious circle encompassing Aβ assembly and FA generation. Even worse, FA induces Aβ deposition in the extracellular space (ECS), which blocks the medicines (dissolved in the interstitial fluid) flowing into the damaged neurons in the deep cortex. However, phototherapy destroys Aβ deposits in the ECS and restores ISF flow. Coenzyme Q10, which scavenges FA, was shown to ameliorate Aβ-induced AD pathological phenotypes, thus suggesting a causative relation between FA toxicity and AD. These findings suggest that the combination of these two methods is a promising strategy for treating AD.
Collapse
|