1
|
Hu B, Guo H, Si H, Shi Z. Emergence of SARS and COVID-19 and preparedness for the next emerging disease X. Front Med 2024; 18:1-18. [PMID: 38561562 DOI: 10.1007/s11684-024-1066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/04/2024]
Abstract
Severe acute respiratory syndrome (SARS) and Coronavirus disease 2019 (COVID-19) are two human Coronavirus diseases emerging in this century, posing tremendous threats to public health and causing great loss to lives and economy. In this review, we retrospect the studies tracing the molecular evolution of SARS-CoV, and we sort out current research findings about the potential ancestor of SARS-CoV-2. Updated knowledge about SARS-CoV-2-like viruses found in wildlife, the animal susceptibility to SARS-CoV-2, as well as the interspecies transmission risk of SARS-related coronaviruses (SARSr-CoVs) are gathered here. Finally, we discuss the strategies of how to be prepared against future outbreaks of emerging or re-emerging coronaviruses.
Collapse
Affiliation(s)
- Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hua Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haorui Si
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
2
|
Hou M, Shi J, Gong Z, Wen H, Lan Y, Deng X, Fan Q, Li J, Jiang M, Tang X, Wu CI, Li F, Ruan Y. Intra- vs. Interhost Evolution of SARS-CoV-2 Driven by Uncorrelated Selection-The Evolution Thwarted. Mol Biol Evol 2023; 40:msad204. [PMID: 37707487 PMCID: PMC10521905 DOI: 10.1093/molbev/msad204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
In viral evolution, a new mutation has to proliferate within the host (Stage I) in order to be transmitted and then compete in the host population (Stage II). We now analyze the intrahost single nucleotide variants (iSNVs) in a set of 79 SARS-CoV-2 infected patients with most transmissions tracked. Here, every mutation has two measures: 1) iSNV frequency within each individual host in Stage I; 2) occurrence among individuals ranging from 1 (private), 2-78 (public), to 79 (global) occurrences in Stage II. In Stage I, a small fraction of nonsynonymous iSNVs are sufficiently advantageous to rise to a high frequency, often 100%. However, such iSNVs usually fail to become public mutations. Thus, the selective forces in the two stages of evolution are uncorrelated and, possibly, antagonistic. For that reason, successful mutants, including many variants of concern, have to avoid being eliminated in Stage I when they first emerge. As a result, they may not have the transmission advantage to outcompete the dominant strains and, hence, are rare in the host population. Few of them could manage to slowly accumulate advantageous mutations to compete in Stage II. When they do, they would appear suddenly as in each of the six successive waves of SARS-CoV-2 strains. In conclusion, Stage I evolution, the gate-keeper, may contravene the long-term viral evolution and should be heeded in viral studies.
Collapse
Affiliation(s)
- Mei Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingrong Shi
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zanke Gong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun Lan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xizi Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qinghong Fan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mengling Jiang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Wu Z, Han Y, Wang Y, Liu B, Zhao L, Zhang J, Su H, Zhao W, Liu L, Bai S, Dong J, Sun L, Zhu Y, Zhou S, Song Y, Sui H, Yang J, Wang J, Zhang S, Qian Z, Jin Q. A comprehensive survey of bat sarbecoviruses across China in relation to the origins of SARS-CoV and SARS-CoV-2. Natl Sci Rev 2023; 10:nwac213. [PMID: 37425654 PMCID: PMC10325003 DOI: 10.1093/nsr/nwac213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 09/10/2023] Open
Abstract
SARS-CoV and SARS-CoV-2 have been thought to originate from bats. In this study, we screened pharyngeal and anal swabs from 13 064 bats collected between 2016 and 2021 at 703 locations across China for sarbecoviruses, covering almost all known southern hotspots, and found 146 new bat sarbecoviruses. Phylogenetic analyses of all available sarbecoviruses show that there are three different lineages-L1 as SARS-CoV-related CoVs (SARSr-CoVs), L2 as SARS-CoV-2-related CoVs (SC2r-CoVs) and novel L-R (recombinants of L1 and L2)-present in Rhinolophus pusillus bats, in the mainland of China. Among the 146 sequences, only four are L-Rs. Importantly, none belong in the L2 lineage, indicating that circulation of SC2r-CoVs in China might be very limited. All remaining 142 sequences belong in the L1 lineage, of which YN2020B-G shares the highest overall sequence identity with SARS-CoV (95.8%). The observation suggests endemic circulations of SARSr-CoVs, but not SC2r-CoVs, in bats in China. Geographic analysis of the collection sites in this study, together with all published reports, indicates that SC2r-CoVs may be mainly present in bats of Southeast Asia, including the southern border of Yunnan province, but absent in all other regions within China. In contrast, SARSr-CoVs appear to have broader geographic distribution, with the highest genetic diversity and sequence identity to human sarbecoviruses along the southwest border of China. Our data provide the rationale for further extensive surveys in broader geographical regions within, and beyond, Southeast Asia in order to find the most recent ancestors of human sarbecoviruses.
Collapse
Affiliation(s)
- Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Lamei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Shibin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yafang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yiping Song
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Hongtao Sui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| |
Collapse
|
4
|
Ruan Y, Wen H, Hou M, Zhai W, Xu S, Lu X. On the epicenter of COVID-19 and the origin of the pandemic strain. Natl Sci Rev 2023; 10:nwac286. [PMID: 37089190 PMCID: PMC10115162 DOI: 10.1093/nsr/nwac286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China
| | - Mei Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China
| | - Weiwei Zhai
- Institute of Zoology, Chinese Academy of Sciences, China
| | - Shuhua Xu
- School of Life Sciences, Fudan University, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution; Yunnan Key Laboratory of Biodiversity Information Kunming Institute of Zoology, Chinese Academy of Sciences, China
| |
Collapse
|
5
|
Domingo JL. An updated review of the scientific literature on the origin of SARS-CoV-2. ENVIRONMENTAL RESEARCH 2022; 215:114131. [PMID: 36037920 PMCID: PMC9420317 DOI: 10.1016/j.envres.2022.114131] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 05/03/2023]
Abstract
More than two and a half years have already passed since the first case of COVID-19 was officially reported (December 2019), as well as more than two years since the WHO declared the current pandemic (March 2020). During these months, the advances on the knowledge of the COVID-19 and SARS-CoV-2, the coronavirus responsible of the infection, have been very significant. However, there are still some weak points on that knowledge, being the origin of SARS-CoV-2 one of the most notorious. One year ago, I published a review focused on what we knew and what we need to know about the origin of that coronavirus, a key point for the prevention of potential future pandemics of a similar nature. The analysis of the available publications until July 2021 did not allow drawing definitive conclusions on the origin of SARS-CoV-2. Given the great importance of that issue, the present review was aimed at updating the scientific information on that origin. Unfortunately, there have not been significant advances on that topic, remaining basically the same two hypotheses on it. One of them is the zoonotic origin of SARS-CoV-2, while the second one is the possible leak of this coronavirus from a laboratory. Most recent papers do not include observational or experimental studies, being discussions and positions on these two main hypotheses. Based on the information here reviewed, there is not yet a definitive and well demonstrated conclusion on the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Jose L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
6
|
Li M, Cheng X, Qin C. Reverse spillover of SARS-CoV-2 from human to wild animals. SCIENCE CHINA LIFE SCIENCES 2022; 65:1902-1904. [PMID: 35657469 PMCID: PMC9162899 DOI: 10.1007/s11427-022-2124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/03/2022]
|
7
|
Gulati I, Khan S, Gulati G, Verma SR, Khan M, Ahmad S, Bantun F, Mathkor DM, Haque S. SARS-CoV-2 origins: zoonotic Rhinolophus vs contemporary models. Biotechnol Genet Eng Rev 2022:1-34. [PMID: 36036250 DOI: 10.1080/02648725.2022.2115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
The question of the origin of coronavirus spread like wildfire ever since it wreaked havoc among humankind, and ever since the scientific community has worked tirelessly to trace the history of the virus. In this review, we have tried to compile relevant literature pertaining to the different theories of origin of SARS-CoV-2, hopefully without any bias, and we strongly support the zoonotic origin of the infamous SARS-CoV-2 in bats and its transfer to human beings through the most probable evolutionary hosts, pangolins and minks. We also support the contemporary 'Circulation Model' that simply mirrors the concept of evolution to explain the origin of the virus which, the authors believe, is the most rational school of thought. The most recent variant of SARS-CoV-2, Omicron, has been taken as an example to clarify the concept. We recommend the community to refer to this model for further understanding and delving deep into this mystery of the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Ishika Gulati
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Garima Gulati
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Prayagraj, Allahabad, India
| | | | - Mahvish Khan
- Department of Biology, College of science, University of Ha'il, Ha'il, Saudi Arabia
| | - Saheem Ahmad
- Department of clinical laboratory science, College of Applied Medical Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
8
|
Hao R, Liu Y, Shen W, Zhao R, Jiang B, Song H, Yan M, Ma H. Surveillance of emerging infectious diseases for biosecurity. SCIENCE CHINA LIFE SCIENCES 2022; 65:1504-1516. [PMID: 35287183 PMCID: PMC8918423 DOI: 10.1007/s11427-021-2071-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 12/03/2022]
Abstract
Emerging infectious diseases, such as COVID-19, continue to pose significant threats to human beings and their surroundings. In addition, biological warfare, bioterrorism, biological accidents, and harmful consequences arising from dual-use biotechnology also pose a challenge for global biosecurity. Improving the early surveillance capabilities is necessary for building a common biosecurity shield for the global community of health for all. Furthermore, surveillance could provide early warning and situational awareness of biosecurity risks. However, current surveillance systems face enormous challenges, including technical shortages, fragmented management, and limited international cooperation. Detecting emerging biological risks caused by unknown or novel pathogens is of particular concern. Surveillance systems must be enhanced to effectively mitigate biosecurity risks. Thus, a global strategy of meaningful cooperation based on efficient integration of surveillance at all levels, including interdisciplinary integration of techniques and interdepartmental integration for effective management, is urgently needed. In this paper, we review the biosecurity risks by analyzing potential factors at all levels globally. In addition to describing biosecurity risks and their impact on global security, we also focus on analyzing the challenges to traditional surveillance and propose suggestions on how to integrate current technologies and resources to conduct effective global surveillance.
Collapse
Affiliation(s)
- Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yuqi Liu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Wanzhu Shen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Bo Jiang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China.
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Muyang Yan
- The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Hui Ma
- The Nursing Department of PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
9
|
Ma H, Wen H, Qin Y, Wu S, Zhang G, Wu CI, Cai Q. Homo-harringtonine, highly effective against coronaviruses, is safe in treating COVID-19 by nebulization. SCIENCE CHINA LIFE SCIENCES 2022; 65:1263-1266. [PMID: 35362917 PMCID: PMC8972673 DOI: 10.1007/s11427-021-2093-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Huajuan Ma
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, 511495, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaoxu Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275, China
| | - Shijie Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275, China
| | - Ge Zhang
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, 511495, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Qichun Cai
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, 511495, China.
| |
Collapse
|
10
|
Ruan Y, Wen H, Hou M, He Z, Lu X, Xue Y, He X, Zhang YP, Wu CI. The twin-beginnings of COVID-19 in Asia and Europe-one prevails quickly. Natl Sci Rev 2022; 9:nwab223. [PMID: 35497643 PMCID: PMC9046579 DOI: 10.1093/nsr/nwab223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
In the spread of SARS-CoV-2, there have been multiple waves of replacement between strains, each of which having a distinct set of mutations. The first wave is a group of four mutations (C241T, C3037T, C14408T and A23403G [this being the amino acid change D614G]; all designated 0 to 1 below). This DG (D614G) group, fixed at the start of the pandemic, is the foundation of all subsequent waves of strains. Curiously, the DG group is absent in early Asian samples but present (and likely common) in Europe from the beginning. European data show that the high fitness of DG1111 requires the synergistic effect of all four mutations. However, the European strains would have had no time to evolve the four DG mutations (0 to 1), had they come directly from the early Asian DG0000 strain. Very likely, the European DG1111 strain had acquired the highly adaptive DG mutations in pre-pandemic Europe and had been spreading in parallel with the Asian strains. Two recent reports further support this twin-beginning interpretation. There was a period of two-way spread between Asia and Europe but, by May 2020, the European strains had supplanted the Asian strains globally. This large-scale replacement of one set of mutations for another has since been replayed many times as COVID-19 progresses.
Collapse
Affiliation(s)
- Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Mei Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China
| | - Yongbiao Xue
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing100101, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing100101, China
- Department of Ecology and Evolution, University of Chicago, Chicago, IL60637, USA
| |
Collapse
|
11
|
Ruan Y, Hou M, Tang X, He X, Lu X, Lu J, Wu CI, Wen H. The Runaway Evolution of SARS-CoV-2 Leading to the Highly Evolved Delta Strain. Mol Biol Evol 2022; 39:msac046. [PMID: 35234869 PMCID: PMC8903489 DOI: 10.1093/molbev/msac046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In new epidemics after the host shift, the pathogens may experience accelerated evolution driven by novel selective pressures. When the accelerated evolution enters a positive feedback loop with the expanding epidemics, the pathogen's runaway evolution may be triggered. To test this possibility in coronavirus disease 2019 (COVID-19), we analyze the extensive databases and identify five major waves of strains, one replacing the previous one in 2020-2021. The mutations differ entirely between waves and the number of mutations continues to increase, from 3-4 to 21-31. The latest wave in the fall of 2021 is the Delta strain which accrues 31 new mutations to become highly prevalent. Interestingly, these new mutations in Delta strain emerge in multiple stages with each stage driven by 6-12 coding mutations that form a fitness group. In short, the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the oldest to the youngest wave, and from the earlier to the later stages of the Delta wave, is a process of acceleration with more and more mutations. The global increase in the viral population size (M(t), at time t) and the mutation accumulation (R(t)) may have indeed triggered the runaway evolution in late 2020, leading to the highly evolved Alpha and then Delta strain. To suppress the pandemic, it is crucial to break the positive feedback loop between M(t) and R(t), neither of which has yet to be effectively dampened by late 2021. New waves after Delta, hence, should not be surprising.
Collapse
Affiliation(s)
- Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Mei Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Xi B, Meng Y, Jiang D, Bai Y, Chen Z, Qu Y, Li S, Wei J, Huang L, Du H. Analyses of Long-Term Epidemic Trends and Evolution Characteristics of Haplotype Subtypes Reveal the Dynamic Selection on SARS-CoV-2. Viruses 2022; 14:454. [PMID: 35336862 PMCID: PMC8954678 DOI: 10.3390/v14030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
The scale of SARS-CoV-2 infection and death is so enormous that further study of the molecular and evolutionary characteristics of SARS-CoV-2 will help us better understand and respond to SARS-CoV-2 outbreaks. The present study analyzed the epidemic and evolutionary characteristics of haplotype subtypes or regions based on 1.8 million high-quality SARS-CoV-2 genomic data. The estimated ratio of the rates of non-synonymous to synonymous changes (Ka/Ks) in North America and the United States were always more than 1.0, while the Ka/Ks in other continents and countries showed a sharp decline, then a slow increase to 1.0, and a dramatic increase over time. H1 (B.1) with the highest substitution rate has become the most dominant haplotype subtype since March 2020 and has evolved into multiple haplotype subtypes with smaller substitution rates. Many evolutionary characteristics of early SARS-CoV-2, such as H3 being the only early haplotype subtype that existed for the shortest time, the global prevalence of H1 and H1-5 (B.1.1) within a month after being detected, and many high divergent genome sequences early in February 2020, indicate the missing of early SARS-CoV-2 genomic data. SARS-CoV-2 experienced dynamic selection from December 2019 to August 2021 and has been under strong positive selection since May 2021. Its transmissibility and the ability of immune escape may be greatly enhanced over time. This will bring greater challenges to the control of the pandemic.
Collapse
Affiliation(s)
- Binbin Xi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (B.X.); (D.J.); (Y.B.); (Z.C.); (Y.Q.); (S.L.); (J.W.); (L.H.)
| | - Yuhuan Meng
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou KingMed Center for Clinical Laboratory Co., Ltd. & Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou 510220, China;
| | - Dawei Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (B.X.); (D.J.); (Y.B.); (Z.C.); (Y.Q.); (S.L.); (J.W.); (L.H.)
| | - Yunmeng Bai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (B.X.); (D.J.); (Y.B.); (Z.C.); (Y.Q.); (S.L.); (J.W.); (L.H.)
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (B.X.); (D.J.); (Y.B.); (Z.C.); (Y.Q.); (S.L.); (J.W.); (L.H.)
| | - Yimo Qu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (B.X.); (D.J.); (Y.B.); (Z.C.); (Y.Q.); (S.L.); (J.W.); (L.H.)
| | - Shuhua Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (B.X.); (D.J.); (Y.B.); (Z.C.); (Y.Q.); (S.L.); (J.W.); (L.H.)
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (B.X.); (D.J.); (Y.B.); (Z.C.); (Y.Q.); (S.L.); (J.W.); (L.H.)
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (B.X.); (D.J.); (Y.B.); (Z.C.); (Y.Q.); (S.L.); (J.W.); (L.H.)
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (B.X.); (D.J.); (Y.B.); (Z.C.); (Y.Q.); (S.L.); (J.W.); (L.H.)
| |
Collapse
|
13
|
Qian Z, Li P, Tang X, Lu J. Evolutionary dynamics of the severe acute respiratory syndrome coronavirus 2 genomes. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:3-22. [PMID: 35658106 PMCID: PMC9047652 DOI: 10.1515/mr-2021-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/23/2022] [Indexed: 12/27/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused immense losses in human lives and the global economy and posed significant challenges for global public health. As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has evolved, thousands of single nucleotide variants (SNVs) have been identified across the viral genome. The roles of individual SNVs in the zoonotic origin, evolution, and transmission of SARS-CoV-2 have become the focus of many studies. This review summarizes recent comparative genomic analyses of SARS-CoV-2 and related coronaviruses (SC2r-CoVs) found in non-human animals, including delineation of SARS-CoV-2 lineages based on characteristic SNVs. We also discuss the current understanding of receptor-binding domain (RBD) evolution and characteristic mutations in variants of concern (VOCs) of SARS-CoV-2, as well as possible co-evolution between RBD and its receptor, angiotensin-converting enzyme 2 (ACE2). We propose that the interplay between SARS-CoV-2 and host RNA editing mechanisms might have partially resulted in the bias in nucleotide changes during SARS-CoV-2 evolution. Finally, we outline some current challenges, including difficulty in deciphering the complicated relationship between viral pathogenicity and infectivity of different variants, and monitoring transmission of SARS-CoV-2 between humans and animals as the pandemic progresses.
Collapse
Affiliation(s)
- Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Pei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100176, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100176, China
| |
Collapse
|
14
|
Abstract
The process of adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans probably had started decades ago, when its ancestor diverged from the bat coronavirus. The adaptive process comprises strategies the virus uses to overcome the respiratory tract defense barriers and replicate and shed in the host cells. These strategies include the impairment of interferon production, hiding immunogenic motifs, avoiding viral RNA detection, manipulating cell autophagy, triggering host cell death, inducing lymphocyte exhaustion and depletion, and finally, mutation and escape from immunity. In addition, SARS-CoV-2 employs strategies to take advantage of host cell resources for its benefits, such as inhibiting the ubiquitin-proteasome system, hijacking mitochondria functions, and usage of enhancing antibodies. It may be anticipated that as the tradeoffs of adaptation progress, the virus destructive burden will gradually subside. Some evidence suggests that SARS-CoV-2 will become part of the human respiratory virome, as had occurred with other coronaviruses, and coevolve with its host.
Collapse
Affiliation(s)
- Eduardo Tosta
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
| |
Collapse
|
15
|
Shan KJ, Wei C, Wang Y, Huan Q, Qian W. Host-specific asymmetric accumulation of mutation types reveals that the origin of SARS-CoV-2 is consistent with a natural process. Innovation (N Y) 2021; 2:100159. [PMID: 34485968 PMCID: PMC8405235 DOI: 10.1016/j.xinn.2021.100159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
The capacity of RNA viruses to adapt to new hosts and rapidly escape the host immune system is largely attributable to de novo genetic diversity that emerges through mutations in RNA. Although the molecular spectrum of de novo mutations-the relative rates at which various base substitutions occur-are widely recognized as informative toward understanding the evolution of a viral genome, little attention has been paid to the possibility of using molecular spectra to infer the host origins of a virus. Here, we characterize the molecular spectrum of de novo mutations for SARS-CoV-2 from transcriptomic data obtained from virus-infected cell lines, enabled by the use of sporadic junctions formed during discontinuous transcription as molecular barcodes. We find that de novo mutations are generated in a replication-independent manner, typically on the genomic strand, and highly dependent on mutagenic mechanisms specific to the host cellular environment. De novo mutations will then strongly influence the types of base substitutions accumulated during SARS-CoV-2 evolution, in an asymmetric manner favoring specific mutation types. Consequently, similarities between the mutation spectra of SARS-CoV-2 and the bat coronavirus RaTG13, which have accumulated since their divergence strongly suggest that SARS-CoV-2 evolved in a host cellular environment highly similar to that of bats before its zoonotic transfer into humans. Collectively, our findings provide data-driven support for the natural origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Jia Shan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshuo Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Huan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|