1
|
Fansher DJ, Besna JN, Pelletier JN. Indigo production identifies hotspots in cytochrome P450 BM3 for diversifying aromatic hydroxylation. Faraday Discuss 2024; 252:29-51. [PMID: 38993060 DOI: 10.1039/d4fd00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Evolution of P450 BM3 is a topic of extensive research, but screening the various substrate/reaction combinations remains a time-consuming process. Indigo production has the potential to serve as a simple high-throughput method for reaction screening, as bacterial colonies expressing indigo (+) variants can be visually identified via their blue phenotype. Indigo (+) single variants, indigo (-) single variants and a combinatorial library, containing mutations that enable the blue phenotype, were screened for their ability to hydroxylate a panel of 12 aromatic compounds using the 4-aminoantipyrine colorimetric assay. Recombination of indigo (+) single variants to create a multiple-variant library is a particularly useful strategy, as all top performing P450 BM3 variants with high hydroxylation activity were either indigo (+) single variants or contained multiple substitutions. Furthermore, active variants, as determined using the 4-AAP assay, were further characterized and several variants were identified that gave more than 90% conversion with 1,3-dichlorobenzene and predominantly formed 2,6-dichlorophenol; other variants showed significant substrate selectivity. This supports the hypothesis that substitution at positions that enable the indigo (+) phenotype, or hotspot residues, is a general mechanism for increasing aromatic hydroxylation activity. Overall, this research demonstrates that indigo (+) single variants, identified via colorimetric colony-based screening, may be recombined to generate a multiply-substituted variant library containing many variants with high aromatic hydroxylation activity. The combination of colony-based screening and other screening assays greatly accelerates enzyme engineering, as readily-identified indigo (+) single variants can be recombined to create a library of active multiple variants without extensive screening of single variants.
Collapse
Affiliation(s)
- Douglas J Fansher
- Chemistry Department, Université de Montréal, Montreal, QC, Canada.
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
| | - Jonathan N Besna
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Joelle N Pelletier
- Chemistry Department, Université de Montréal, Montreal, QC, Canada.
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Guan A, He Z, Wang X, Jia ZJ, Qin J. Engineering the next-generation synthetic cell factory driven by protein engineering. Biotechnol Adv 2024; 73:108366. [PMID: 38663492 DOI: 10.1016/j.biotechadv.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
4
|
Ma L, Sun T, Liu Y, Zhao Y, Liu X, Li Y, Chen X, Cao L, Kang Q, Guo J, Du L, Wang W, Li S. Enzymatic synthesis of indigo derivatives by tuning P450 BM3 peroxygenases. Synth Syst Biotechnol 2023; 8:452-461. [PMID: 37448528 PMCID: PMC10336827 DOI: 10.1016/j.synbio.2023.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Indigoids, a class of bis-indoles, have long been applied in dyeing, food, and pharmaceutical industries. Recently, interest in these 'old' molecules has been renewed in the field of organic semiconductors as functional building blocks for organic electronics due to their excellent chemical and physical properties. However, these indigo derivatives are difficult to access through chemical synthesis. In this study, we engineer cytochrome P450 BM3 from an NADPH-dependent monooxygenase to peroxygenases through directed evolution. A select number of P450 BM3 variants are used for the selective oxidation of indole derivatives to form different indigoid pigments with a spectrum of colors. Among the prepared indigoid organic photocatalysts, a majority of indigoids demonstrate a reduced band gap than indigo due to the increased light capture and improved charge separation, making them promising candidates for the development of new organic electronic devices. Thus, we present a useful enzymatic approach with broad substrate scope and cost-effectiveness by using low-cost H2O2 as a cofactor for the preparation of diversified indigoids, offering versatility in designing and manufacturing new dyestuff and electronic/sensor components.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Tianjian Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yunjie Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaohui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yuxuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xinwei Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Lin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qianqian Kang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
5
|
Pan Y, Li G, Liu R, Guo J, Liu Y, Liu M, Zhang X, Chi L, Xu K, Wu R, Zhang Y, Li Y, Gao X, Li S. Unnatural activities and mechanistic insights of cytochrome P450 PikC gained from site-specific mutagenesis by non-canonical amino acids. Nat Commun 2023; 14:1669. [PMID: 36966128 PMCID: PMC10039885 DOI: 10.1038/s41467-023-37288-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/09/2023] [Indexed: 03/27/2023] Open
Abstract
Cytochrome P450 enzymes play important roles in the biosynthesis of macrolide antibiotics by mediating a vast variety of regio- and stereoselective oxidative modifications, thus improving their chemical diversity, biological activities, and pharmaceutical properties. Tremendous efforts have been made on engineering the reactivity and selectivity of these useful biocatalysts. However, the 20 proteinogenic amino acids cannot always satisfy the requirement of site-directed/random mutagenesis and rational protein design of P450 enzymes. To address this issue, herein, we practice the semi-rational non-canonical amino acid mutagenesis for the pikromycin biosynthetic P450 enzyme PikC, which recognizes its native macrolide substrates with a 12- or 14-membered ring macrolactone linked to a deoxyamino sugar through a unique sugar-anchoring mechanism. Based on a semi-rationally designed substrate binding strategy, non-canonical amino acid mutagenesis at the His238 position enables the unnatural activities of several PikC mutants towards the macrolactone precursors without any sugar appendix. With the aglycone hydroxylating activities, the pikromycin biosynthetic pathway is rewired by the representative mutant PikCH238pAcF carrying a p-acetylphenylalanine residue at the His238 position and a promiscuous glycosyltransferase. Moreover, structural analysis of substrate-free and three different enzyme-substrate complexes of PikCH238pAcF provides significant mechanistic insights into the substrate binding and catalytic selectivity of this paradigm biosynthetic P450 enzyme.
Collapse
Affiliation(s)
- Yunjun Pan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Guobang Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ruxin Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yunjie Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Luping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuzhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
6
|
Liu K, Xu Z, Zhao Z, Chen Y, Chai Y, Ma L, Li S. A Dual Fluorescence Assay Enables High-Throughput Screening for Poly(ethylene terephthalate) Hydrolases. CHEMSUSCHEM 2023; 16:e202202019. [PMID: 36511949 DOI: 10.1002/cssc.202202019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The drastically increasing consumption of petroleum-derived plastics hasserious environmental impacts and raises public concerns. Poly(ethylene terephthalate) (PET) is amongst the most extensively produced synthetic polymers. Enzymatic hydrolysis of PET recently emerged as an enticing path for plastic degradation and recycling. In-lab directed evolution has revealed the great potential of PET hydrolases (PETases). However, the time-consuming and laborious PETase assays hinder the identification of effective variants in large mutant libraries. Herein, we devise and validate a dual fluorescence-based high-throughput screening (HTS) assay for a representative IsPETase. The two-round HTS of a pilot library consisting of 2850 IsPETase variants yields six mutant IsPETases with 1.3-4.9 folds improved activities. Compared to the currently used structure- or computational redesign-based PETase engineering, this HTS approach provides a new strategy for discovery of new beneficial mutation patterns of PETases.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, P. R. China
| | - Ziping Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, P. R. China
| | - Zhiyi Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, P. R. China
| | - Yuexing Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, P. R. China
| | - Yating Chai
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, P. R. China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, P. R. China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No. 168 Wenhai Middle Rd, Qingdao, Shandong, 266237, P. R. China
| |
Collapse
|