1
|
Khorvash M, Blinov N, Ladner-Keay C, Lu J, Silverman JM, Gibbs E, Wang YT, Kovalenko A, Wishart D, Cashman NR. Molecular interactions between monoclonal oligomer-specific antibody 5E3 and its amyloid beta cognates. PLoS One 2020; 15:e0232266. [PMID: 32469918 PMCID: PMC7259632 DOI: 10.1371/journal.pone.0232266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/12/2020] [Indexed: 11/30/2022] Open
Abstract
Oligomeric amyloid β (Aβ) is currently considered the most neurotoxic form of the Aβ peptide implicated in Alzheimer’s disease (AD). The molecular structures of the oligomers have remained mostly unknown due to their transient nature. As a result, the molecular mechanisms of interactions between conformation-specific antibodies and their Aβ oligomer (AβO) cognates are not well understood. A monoclonal conformation-specific antibody, m5E3, was raised against a structural epitope of Aβ oligomers. m5E3 binds to AβOs with high affinity, but not to Aβ monomers or fibrils. In this study, a computational model of the variable fragment (Fv) of the m5E3 antibody (Fv5E3) is introduced. We further employ docking and molecular dynamics simulations to determine the molecular details of the antibody-oligomer interactions, and to classify the AβOs as Fv5E3-positives and negatives, and to provide a rationale for the low affinity of Fv5E3 for fibrils. This information will help us to perform site-directed mutagenesis on the m5E3 antibody to improve its specificity and affinity toward oligomeric Aβ species. We also provide evidence for the possible capability of the m5E3 antibody to disaggregate AβOs and to fragment protofilaments.
Collapse
Affiliation(s)
- Massih Khorvash
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Nick Blinov
- Department of Mechanical Engineering, Edmonton, Alberta, Canada
- National Research Council of Canada, Edmonton, Alberta, Canada
| | - Carol Ladner-Keay
- National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jie Lu
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Judith M. Silverman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Ebrima Gibbs
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Yu Tian Wang
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Andriy Kovalenko
- Department of Mechanical Engineering, Edmonton, Alberta, Canada
- National Research Council of Canada, Edmonton, Alberta, Canada
| | - David Wishart
- National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Neil R. Cashman
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
2
|
Butterfield SM, Lashuel HA. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew Chem Int Ed Engl 2011; 49:5628-54. [PMID: 20623810 DOI: 10.1002/anie.200906670] [Citation(s) in RCA: 489] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The toxicity of amyloid-forming proteins is correlated with their interactions with cell membranes. Binding events between amyloidogenic proteins and membranes result in mutually disruptive structural perturbations, which are associated with toxicity. Membrane surfaces promote the conversion of amyloid-forming proteins into toxic aggregates, and amyloidogenic proteins, in turn, compromise the structural integrity of the cell membrane. Recent studies with artificial model membranes have highlighted the striking resemblance of the mechanisms of membrane permeabilization of amyloid-forming proteins to those of pore-forming toxins and antimicrobial peptides.
Collapse
Affiliation(s)
- Sara M Butterfield
- Laboratory of Molecular Neurobiology and Neuroproteomics, Swiss Federal Institute of Technology Lausanne (EPFL), SV-BMI-LMNN AI2351, 1015 Lausanne, Switzerland
| | | |
Collapse
|
4
|
Park TJ, Im S, Kim JS, Kim Y. High-yield expression and purification of the transmembrane region of ion channel-forming amyloid-β protein for NMR structural studies. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|