1
|
Peng Y, Jin X, Zheng Y, Han D, Liu K, Jiang L. Direct Imaging of Superwetting Behavior on Solid-Liquid-Vapor Triphase Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28869679 DOI: 10.1002/adma.201703009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/17/2017] [Indexed: 05/11/2023]
Abstract
A solid-liquid-vapor interface dominated by a three-phase contact line usually serves as an active area for interfacial reactions and provides a vital clue to surface behavior. Recently, direct imaging of the triphase interface of superwetting interfaces on the microscale/nanoscale has attracted broad scientific attention for both theoretical research and practical applications, and has gradually become an efficient and intuitive approach to explore the wetting behaviors of various multiphase interfaces. Here, recent progress on characterizing the solid-liquid-vapor triphase interface on the microscale/nanoscale with diverse types of imaging apparatus is summarized. Moreover, the accurate, visible, and quantitative information that can be obtained shows the real interfacial morphology of the wetting behaviors of multiphase interfaces. On the basis of fundamental research, technical innovations in imaging and complicated multiphase interfaces of the superwetting surface are also briefly presented.
Collapse
Affiliation(s)
- Yun Peng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xu Jin
- Research Institute of Petroleum, Exploration and Development, Petro China, Beijing, 100191, P. R. China
| | - Yongmei Zheng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kesong Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Stetsyshyn Y, Raczkowska J, Lishchynskyi O, Bernasik A, Kostruba A, Harhay K, Ohar H, Marzec MM, Budkowski A. Temperature-Controlled Three-Stage Switching of Wetting, Morphology, and Protein Adsorption. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12035-12045. [PMID: 28291326 DOI: 10.1021/acsami.7b00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The novel polymeric coatings of oligoperoxide-graft-poly(4-vinylpyridine-co-oligo(ethylene glycol)ethyl ether methacrylate246) [oligoperoxide-graft-P(4VP-co-OEGMA246)] attached to glass were successfully fabricated. The composition, thickness, morphology, and wettability of resulting coatings were analyzed using X-ray photoelectron spectroscopy, ellipsometry, atomic force microscopy, and contact angle measurements, respectively. In addition, adsorption of the bovine serum albumin was examined with fluorescence microscopy. The thermal response of wettability and morphology of the coatings followed by that of protein adsorption revealed two distinct transitions at 10 and 23 °C. For the first time, three stage switching was observed not only for surface wetting but also for morphology and protein adsorption. Moreover, the influence of the pH on thermo-sensitivity of modified surfaces was shown.
Collapse
Affiliation(s)
- Yurij Stetsyshyn
- Lviv Polytechnic National University , S. Bandery 12, 79013 Lviv, Ukraine
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University , Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ostap Lishchynskyi
- Lviv Polytechnic National University , S. Bandery 12, 79013 Lviv, Ukraine
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology , Al. Mickiewicza 30, 30-049 Kraków, Poland
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology , Al. Mickiewicza 30, 30-059 Kraków, Poland
| | | | - Khrystyna Harhay
- Lviv Polytechnic National University , S. Bandery 12, 79013 Lviv, Ukraine
| | - Halyna Ohar
- Lviv Polytechnic National University , S. Bandery 12, 79013 Lviv, Ukraine
| | - Mateusz M Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology , Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University , Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
3
|
Gosecka M, Raczkowska J, Haberko J, Awsiuk K, Rysz J, Budkowski A, Marzec MM, Bernasik A, Basinska T. Multilayers of poly(styrene/α- tert -butoxy-ω-vinylbenzyl-polyglycidol) microspheres with core-shell morphology: Characterization by AFM, SIMS and XPS. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Raczkowska J, Stetsyshyn Y, Awsiuk K, Zemła J, Kostruba A, Harhay K, Marzec M, Bernasik A, Lishchynskyi O, Ohar H, Budkowski A. Temperature-responsive properties of poly(4-vinylpyridine) coatings: influence of temperature on the wettability, morphology, and protein adsorption. RSC Adv 2016. [DOI: 10.1039/c6ra07223b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(4-vinylpyridine)-grafted brushes demonstrate a thermal response of their wettability (stronger than that for spin-coated films), surface morphology, and protein adsorption.
Collapse
Affiliation(s)
- Joanna Raczkowska
- Smoluchowski Institute of Physics
- Jagiellonian University
- 30-348 Kraków
- Poland
| | | | - Kamil Awsiuk
- Smoluchowski Institute of Physics
- Jagiellonian University
- 30-348 Kraków
- Poland
| | - Joanna Zemła
- Smoluchowski Institute of Physics
- Jagiellonian University
- 30-348 Kraków
- Poland
| | - Andrij Kostruba
- Lviv Academy of Commerce
- Lviv Institute for Physical Optics
- 79011 Lviv
- Ukraine
| | | | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
| | - Andrzej Bernasik
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
- AGH University of Science and Technology
- Faculty of Physics and Applied Computer Science
| | | | - Halyna Ohar
- Lviv Polytechnic National University
- 79013 Lviv
- Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics
- Jagiellonian University
- 30-348 Kraków
- Poland
| |
Collapse
|
5
|
Li M, Liu L, Xi N, Wang Y, Dong Z, Xiao X, Zhang W. Progress of AFM single-cell and single-molecule morphology imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5906-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
In vitro assay of cytoskeleton nanomechanics as a tool for screening potential anticancer effects of natural plant extract, tubeimoside I on human hepatoma (HepG2) cells. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
RETRACTED ARTICLE Recent progress in AFM studies of biodegradable poly(lactic acid) materials. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Calculation of the intracellular elastic modulus based on an atomic force microscope micro-cutting system. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5053-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Detecting CD20-Rituximab interaction forces using AFM single-molecule force spectroscopy. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4789-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Chen P, Jiang L, Han D. In situ imaging of multiphase bio-interfaces at the micro-/nanoscale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2825-2835. [PMID: 21932246 DOI: 10.1002/smll.201100039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/04/2011] [Indexed: 05/31/2023]
Abstract
The multiphase bio-interfacial system constituted by biological surfaces and their surrounding environment is usually considered to be an essential clue for exploring the mysterious relationship between surface architecture and function. As a visualizing method to understand these systems, in situ imaging of multiphase interfaces (e.g., air/liquid/solid and oil/water/solid systems) at the micro-/nanoscale, still remains a huge challenge, as a result of their heterogeneity and complexity. Here, recent progress on real-space micro-/nanoscale imaging of multiphase bio-interfacial systems is reviewed; this includes several techniques and imaging results on bio-interfaces, such as the lotus leaf, fish scale, living cell's surface, and fresh tissue surface. The results evidently show that interfacial structures have a significant impact on the state of the microscopic multiphase interface, further influencing specific functions. Based on this research, technical innovations, some more complicated multiphase interface systems, and structure-function coupling mechanism are proposed.
Collapse
Affiliation(s)
- Peipei Chen
- National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | | | | |
Collapse
|
11
|
Creasey R, Sharma S, Craig JE, Gibson CT, Ebner A, Hinterdorfer P, Voelcker NH. Detecting protein aggregates on untreated human tissue samples by atomic force microscopy recognition imaging. Biophys J 2010; 99:1660-7. [PMID: 20816080 DOI: 10.1016/j.bpj.2010.06.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 06/15/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022] Open
Abstract
We apply topography and recognition (TREC) imaging to the analysis of whole, untreated human tissue for what we believe to be the first time. Pseudoexfoliation syndrome (PEX), a well-known cause of irreversible blindness worldwide, is characterized by abnormal protein aggregation on the anterior lens capsule of the eye. However, the development of effective therapies has been hampered by a lack of detailed knowledge of the protein constituents in these pathological deposits and their distribution. Using both TREC and immunofluorescence, one of the proteins implicated in the PEX pathology--the apolipoprotein clusterin--was detected, and differences in its distribution pattern on the surface of untreated human lens capsule tissue in both PEX and normal control samples were investigated. Our study shows the potential of TREC imaging for the analysis of whole, untreated human tissue samples.
Collapse
Affiliation(s)
- Rhiannon Creasey
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Detecting CD20-Rituximab specific interactions on lymphoma cells using atomic force microscopy. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1189-95. [DOI: 10.1007/s11427-010-4070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/31/2010] [Indexed: 10/18/2022]
|
13
|
|