1
|
Wang Y, Jiang C, Zhang X, Yan H, Yin Z, Sun X, Gao F, Zhao Y, Liu W, Han S, Zhang J, Zhang Y, Zhang Z, Zhang H, Li J, Xie X, Zhao Q, Wang X, Ye G, Li J, Ming R, Li Z. Upland rice genomic signatures of adaptation to drought resistance and navigation to molecular design breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:662-677. [PMID: 37909415 PMCID: PMC10893945 DOI: 10.1111/pbi.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Upland rice is a distinctive drought-aerobic ecotype of cultivated rice highly resistant to drought stress. However, the genetic and genomic basis for the drought-aerobic adaptation of upland rice remains largely unclear due to the lack of genomic resources. In this study, we identified 25 typical upland rice accessions and assembled a high-quality genome of one of the typical upland rice varieties, IRAT109, comprising 384 Mb with a contig N50 of 19.6 Mb. Phylogenetic analysis revealed upland and lowland rice have distinct ecotype differentiation within the japonica subgroup. Comparative genomic analyses revealed that adaptive differentiation of lowland and upland rice is likely attributable to the natural variation of many genes in promoter regions, formation of specific genes in upland rice, and expansion of gene families. We revealed differentiated gene expression patterns in the leaves and roots of the two ecotypes and found that lignin synthesis mediated by the phenylpropane pathway plays an important role in the adaptive differentiation of upland and lowland rice. We identified 28 selective sweeps that occurred during domestication and validated that the qRT9 gene in selective regions can positively regulate drought resistance in rice. Eighty key genes closely associated with drought resistance were appraised for their appreciable potential in drought resistance breeding. Our study enhances the understanding of the adaptation of upland rice and provides a genome navigation map of drought resistance breeding, which will facilitate the breeding of drought-resistant rice and the "blue revolution" in agriculture.
Collapse
Affiliation(s)
- Yulong Wang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Conghui Jiang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Wetland Agriculture and EcologyShandong Academy of Agricultural SciencesJinanShandongChina
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Agricultural Genomics Institute in ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Huimin Yan
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhigang Yin
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Fenghua Gao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yan Zhao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Wei Liu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shichen Han
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jingjing Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yage Zhang
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xianzhi Xie
- Institute of Wetland Agriculture and EcologyShandong Academy of Agricultural SciencesJinanShandongChina
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoning Wang
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| | - Guoyou Ye
- Agricultural Genomics Institute in ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
- Institution International Rice Research InstituteLos BañosLagunaPhilippines
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| |
Collapse
|
2
|
Li J, Qin RY, Li H, Xu RF, Yang YC, Ni DH, Ma H, Li L, Wei PC, Yang JB. Low-Temperature-Induced Expression of Rice Ureidoglycolate Amidohydrolase is Mediated by a C-Repeat/Dehydration-Responsive Element that Specifically Interacts with Rice C-Repeat-Binding Factor 3. FRONTIERS IN PLANT SCIENCE 2015; 6:1011. [PMID: 26617632 PMCID: PMC4643140 DOI: 10.3389/fpls.2015.01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/02/2015] [Indexed: 05/30/2023]
Abstract
Nitrogen recycling and redistribution are important for the environmental stress response of plants. In non-nitrogen-fixing plants, ureide metabolism is crucial to nitrogen recycling from organic sources. Various studies have suggested that the rate-limiting components of ureide metabolism respond to environmental stresses. However, the underlying regulation mechanism is not well understood. In this report, rice ureidoglycolate amidohydrolase (OsUAH), which is a recently identified enzyme catalyzing the final step of ureide degradation, was identified as low-temperature- (LT) but not abscisic acid- (ABA) regulated. To elucidate the LT regulatory mechanism at the transcriptional level, we isolated and characterized the promoter region of OsUAH (P OsUAH ). Series deletions revealed that a minimal region between -522 and -420 relative to the transcriptional start site was sufficient for the cold induction of P OsUAH . Detailed analyses of this 103-bp fragment indicated that a C-repeat/dehydration-responsive (CRT/DRE) element localized at position -434 was essential for LT-responsive expression. A rice C-repeat-binding factors/DRE-binding proteins 1 (CBFs/DREB1s) subfamily member, OsCBF3, was screened to specifically bind to the CRT/DRE element in the minimal region both in yeast one-hybrid assays and in in vitro gel-shift analysis. Moreover, the promoter could be exclusively trans-activated by the interaction between the CRT/DRE element and OsCBF3 in vivo. These findings may help to elucidate the regulation mechanism of stress-responsive ureide metabolism genes and provide an example of the member-specific manipulation of the CBF/DREB1 subfamily.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian-Bo Yang
- *Correspondence: Peng-Cheng Wei, ; jian-Bo Yang,
| |
Collapse
|
3
|
Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genomics 2013; 14:647. [PMID: 24059455 PMCID: PMC3853109 DOI: 10.1186/1471-2164-14-647] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought tolerance is an attribute maintained in plants by cross-talk between multiple and cascading metabolic pathways. Without a sequenced genome available for horse gram, it is difficult to comprehend such complex networks and intercalated genes associated with drought tolerance of horse gram (Macrotyloma uniflorum). Therefore, de novo transcriptome discovery and associated analyses was done for this highly drought tolerant yet under exploited legume to decipher its genetic makeup. RESULTS Eight samples comprising of shoot and root tissues of two horse gram genotypes (drought-sensitive; M-191 and drought-tolerant; M-249) were used for comparison under control and polyethylene glycol-induced drought stress conditions. Using Illumina sequencing technology, a total of 229,297,896 paired end read pairs were generated and utilized for de novo assembly of horse gram. Significant BLAST hits were obtained for 26,045 transcripts while, 3,558 transcripts had no hits but contained important conserved domains. A total of 21,887 unigenes were identified. SSRs containing sequences covered 16.25% of the transcriptome with predominant tri- and mono-nucleotides (43%). The total GC content of the transcriptome was found to be 43.44%. Under Gene Ontology response to stimulus, DNA binding and catalytic activity was highly expressed during drought stress conditions. Serine/threonine protein kinase was found to dominate in Enzyme Classification while pathways belonging to ribosome metabolism followed by plant pathogen interaction and plant hormone signal transduction were predominant in Kyoto Encyclopedia of Genes and Genomes analysis. Independent search on plant metabolic network pathways suggested valine degradation, gluconeogenesis and purine nucleotide degradation to be highly influenced under drought stress in horse gram. Transcription factors belonging to NAC, MYB-related, and WRKY families were found highly represented under drought stress. qRT-PCR validated the expression profile for 9 out of 10 genes analyzed in response to drought stress. CONCLUSIONS De novo transcriptome discovery and analysis has generated enormous information over horse gram genomics. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against drought stress by horse gram. The knowledge generated can be further utilized for exploring other underexploited plants for stress responsive genes and improving plant tolerance.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Plant Metabolic Engineering Laboratory, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, HP, India.
| | | | | | | | | | | | | |
Collapse
|
4
|
Swamy BPM, Kumar A. Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol Adv 2013; 31:1308-18. [PMID: 23702083 DOI: 10.1016/j.biotechadv.2013.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/23/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022]
Abstract
Rice (Oryza sativa L.), the major staple food crop of the world, faces a severe threat from widespread drought. The development of drought-tolerant rice varieties is considered a feasible option to counteract drought stress. The screening of rice germplasm under drought and its characterization at the morphological, genetic, and molecular levels revealed the existence of genetic variation for drought tolerance within the rice gene pool. The improvements made in managed drought screening and selection for grain yield under drought have significantly contributed to progress in drought breeding programs. The availability of rice genome sequence information, genome-wide molecular markers, and low-cost genotyping platforms now makes it possible to routinely apply marker-assisted breeding approaches to improve grain yield under drought. Grain yield QTLs with a large and consistent effect under drought have been indentified and successfully pyramided in popular rice mega-varieties. Various rice functional genomics resources, databases, tools, and recent advances in "-omics" are facilitating the characterization of genes and pathways involved in drought tolerance, providing the basis for candidate gene identification and allele mining. The transgenic approach is successful in generating drought tolerance in rice under controlled conditions, but field-level testing is necessary. Genomics-assisted drought breeding approaches hold great promise, but a well-planned integration with standardized phenotyping is highly essential to exploit their full potential.
Collapse
|
5
|
Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC PLANT BIOLOGY 2011; 11:174. [PMID: 22136218 PMCID: PMC3268746 DOI: 10.1186/1471-2229-11-174] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 12/02/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant roots are important organs to uptake soil water and nutrients, perceiving and transducing of soil water deficit signals to shoot. The current knowledge of drought stress transcriptomes in rice are mostly relying on comparative studies of diverse genetic background under drought. A more reliable approach is to use near-isogenic lines (NILs) with a common genetic background but contrasting levels of resistance to drought stress under initial exposure to water deficit. Here, we examined two pairs of NILs in IR64 background with contrasting drought tolerance. We obtained gene expression profile in roots of rice NILs under different levels of drought stress help to identify genes and mechanisms involved in drought stress. RESULTS Global gene expression analysis showed that about 55% of genes differentially expressed in roots of rice in response to drought stress treatments. The number of differentially expressed genes (DEGs) increased in NILs as the level of water deficits, increased from mild to severe condition, suggesting that more genes were affected by increasing drought stress. Gene onthology (GO) test and biological pathway analysis indicated that activated genes in the drought tolerant NILs IR77298-14-1-2-B-10 and IR77298-5-6-B-18 were mostly involved in secondary metabolism, amino acid metabolism, response to stimulus, defence response, transcription and signal transduction, and down-regulated genes were involved in photosynthesis and cell wall growth. We also observed gibberellic acid (GA) and auxin crosstalk modulating lateral root formation in the tolerant NILs. CONCLUSIONS Transcriptome analysis on two pairs of NILs with a common genetic background (~97%) showed distinctive differences in gene expression profiles and could be effective to unravel genes involved in drought tolerance. In comparison with the moderately tolerant NIL IR77298-5-6-B-18 and other susceptible NILs, the tolerant NIL IR77298-14-1-2-B-10 showed a greater number of DEGs for cell growth, hormone biosynthesis, cellular transports, amino acid metabolism, signalling, transcription factors and carbohydrate metabolism in response to drought stress treatments. Thus, different mechanisms are achieving tolerance in the two tolerant lines.
Collapse
Affiliation(s)
- Ali Moumeni
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
- Rice Research Institute of Iran in Mazandaran, POBox 145, Postal-Code 46191-91951, Km8 Babol Rd., Amol, Mazandaran, Iran
| | - Kouji Satoh
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroaki Kondoh
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Takayuki Asano
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Aeni Hosaka
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Ramiah Venuprasad
- International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
- Africa Rice Centre (AfricaRice), Ibadan station, c/o IITA, PmB 5320 Oyo road, Nigeria
| | - Rachid Serraj
- International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
- International Centre for Agricultural Research in the Dry Areas (ICARDA), POBox 5466, Aleppo, Syria
| | - Arvind Kumar
- International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
| | - Hei Leung
- International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
| | - Shoshi Kikuchi
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
6
|
Differential gene expression in sugarcane in response to challenge by fungal pathogen Ustilago scitaminea revealed by cDNA-AFLP. J Biomed Biotechnol 2011; 2011:160934. [PMID: 21792273 PMCID: PMC3142712 DOI: 10.1155/2011/160934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/26/2011] [Accepted: 06/01/2011] [Indexed: 12/04/2022] Open
Abstract
Differential gene expression in sugarcane during sugarcane-Ustilago scitaminea interaction was conducted in a smut-resistant genotype. Using cDNA-AFLP along with silver staining, a total of 136 transcript-derived fragments (TDFs) were found to be differentially expressed in response to challenge by U. scitaminea. Forty TDFs, 34 newly induced plus six with obvious upregulated expression after infection, were sequenced and validated by RT-PCR analysis. These results demonstrated that the expression of 37 out of these TDFs in RT-PCR analysis was consistent with that in cDNA-AFLP analysis. Based on BlastX in NCBI, 28 TDFs were assumed to function in sugarcane under U. scitaminea stress. Analysis of expression profile of three TDFs revealed that they responded differently after infection with U. scitaminea, and the transcription was significantly enhanced. The response of two TDFs, SUC06 and SUC09, occurred before that of SUC10. This study enriches our knowledge of the molecular basis for sugarcane response to U. scitaminea infection.
Collapse
|