1
|
Huang B, Huang D, Zhang J, Xiong J, Wu S, Zheng X, Huang L, Lin J, Li Y, Hong Z, Feurtado JA, Wu W. Barley young leaf chlorina, a putative pentatricopeptide repeat gene, is essential for chloroplast development in young leaves. PLANT MOLECULAR BIOLOGY 2025; 115:36. [PMID: 40000512 DOI: 10.1007/s11103-025-01561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
A spontaneous barley mutant, young leaf chlorina (ylc), was identified in this study. Young leaves of ylc exhibited a yellow base and green tip, with reduced chlorophyll content, and altered chlorophyll fluorescence pattern, and underdeveloped grana in chloroplasts. The color of mutant leaves gradually transitioned to pale green and then became green in mature leaves. The ylc phenotype was found to be controlled by a recessive locus mapped to a 2.4 Mb interval on chromosome 7HS using bulked-segregant analysis with deep sequencing and further fine mapped to a 410 kb interval using polymorphic markers. The YLC locus co-segregated with a molecular marker that led to identification of HORVU7Hr1G011570 as the most likely candidate gene. As compared to the barley reference genome, the candidate ylc allele contained nucleotide changes that would lead to functional alterations of its protein product. The candidate YLC gene encodes a DYW-type pentatricopeptide repeat (PPR) protein, implicated in RNA cleavage and RNA editing in chloroplasts. Chlorophyll fluorescence analysis suggests that the PPR protein may regulate chloroplast development through the function of NAD(P)H dehydrogenase (NDH) complex and plays a pivotal role in mediating electron flow in thylakoid membranes during leaf growth in barley.
Collapse
Affiliation(s)
- Biguang Huang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Fujian Collegiate Key Laboratory of Applied Plant Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Daiqing Huang
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
| | - Jianchun Zhang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiwei Xiong
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shiyu Wu
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xinrong Zheng
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Likun Huang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jinbin Lin
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yu Li
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - J Allan Feurtado
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
| | - Weiren Wu
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
2
|
Wang H, Li Z, Yuan L, Zhou H, Hou X, Liu T. Cold acclimation can specifically inhibit chlorophyll biosynthesis in young leaves of Pakchoi. BMC PLANT BIOLOGY 2021; 21:172. [PMID: 33838654 PMCID: PMC8035748 DOI: 10.1186/s12870-021-02954-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/01/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Leaf color is an important trait in breeding of leafy vegetables. Y-05, a pakchoi (Brassica rapa ssp. chinensis) cultivar, displays yellow inner (YIN) and green outer leaves (GOU) after cold acclimation. However, the mechanism of this special phenotype remains elusive. RESULTS We assumed that the yellow leaf phenotype of Y-05 maybe caused by low chlorophyll content. Pigments measurements and transmission electron microscopy (TEM) analysis showed that the yellow phenotype is closely related with decreased chlorophyll content and undeveloped thylakoids in chloroplast. Transcriptomes and metabolomes sequencing were next performed on YIN and GOU. The transcriptomes data showed that 4887 differentially expressed genes (DEGs) between the YIN and GOU leaves were mostly enriched in the chloroplast- and chlorophyll-related categories, indicating that the chlorophyll biosynthesis is mainly affected during cold acclimation. Together with metabolomes data, the inhibition of chlorophyll biosynthesis is contributed by blocked 5-aminolevulinic acid (ALA) synthesis in yellow inner leaves, which is further verified by complementary and inhibitory experiments of ALA. Furthermore, we found that the blocked ALA is closely associated with increased BrFLU expression, which is indirectly altered by cold acclimation. In BrFLU-silenced pakchoi Y-05, cold-acclimated leaves still showed green phenotype and higher chlorophyll content compared with control, meaning silencing of BrFLU can rescue the leaf yellowing induced by cold acclimation. CONCLUSIONS Our findings suggested that cold acclimation can indirectly promote the expression of BrFLU in inner leaves of Y-05 to block ALA synthesis, resulting in decreased chlorophyll content and leaf yellowing. This study revealed the underlying mechanisms of leaves color change in cold-acclimated Y-05.
Collapse
Affiliation(s)
- Huiyu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs of the P.R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs of the P.R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, 230036 China
| | - Hefang Zhou
- Huainan Agricultural Science Institute, Huainan, 232001 China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs of the P.R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs of the P.R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
3
|
Su HG, Li B, Song XY, Ma J, Chen J, Zhou YB, Chen M, Min DH, Xu ZS, Ma YZ. Genome-Wide Analysis of the DYW Subgroup PPR Gene Family and Identification of GmPPR4 Responses to Drought Stress. Int J Mol Sci 2019; 20:E5667. [PMID: 31726763 PMCID: PMC6888332 DOI: 10.3390/ijms20225667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Pentatricopeptide-repeat (PPR) proteins were identified as a type of nucleus coding protein that is composed of multiple tandem repeats. It has been reported that PPR genes play an important role in RNA editing, plant growth and development, and abiotic stresses in plants. However, the functions of PPR proteins remain largely unknown in soybean. In this study, 179 DYW subgroup PPR genes were identified in soybean genome (Glycine max Wm82.a2.v1). Chromosomal location analysis indicated that DYW subgroup PPR genes were mapped to all 20 chromosomes. Phylogenetic relationship analysis revealed that DYW subgroup PPR genes were categorized into three distinct Clusters (I to III). Gene structure analysis showed that most PPR genes were featured by a lack of intron. Gene duplication analysis demonstrated 30 PPR genes (15 pairs; ~35.7%) were segmentally duplicated among Cluster I PPR genes. Furthermore, we validated the mRNA expression of three genes that were highly up-regulated in soybean drought- and salt-induced transcriptome database and found that the expression levels of GmPPR4 were induced under salt and drought stresses. Under drought stress condition, GmPPR4-overexpressing (GmPPR4-OE) plants showed delayed leaf rolling; higher content of proline (Pro); and lower contents of H2O2, O2- and malondialdehyde (MDA) compared with the empty vector (EV)-control plants. GmPPR4-OE plants exhibited increased transcripts of several drought-inducible genes compared with EV-control plants. Our results provided a comprehensive analysis of the DYW subgroup PPR genes and an insight for improving the drought tolerance in soybean.
Collapse
Affiliation(s)
- Hong-Gang Su
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Bo Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| | - Xin-Yuan Song
- Agro-Biotechnology Research Institute, Jilin Academy of Agriculture Sciences, Changchun 130033, China;
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| | - Dong-Hong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| |
Collapse
|