1
|
Gao X, Li Y, Li J, Xiang X, Wu J, Zeng S. Stimuli-responsive materials in oral diseases: a review. Clin Oral Investig 2024; 28:497. [PMID: 39177681 DOI: 10.1007/s00784-024-05884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Oral diseases, such as dental caries, periodontitis, and oral cancers, are highly prevalent worldwide. Many oral diseases are typically associated with bacterial infections or the proliferation of malignant cells, and they are usually located superficially. MATERIALS AND METHODS Articles were retrieved from PubMed/Medline, Web of Science. All studies focusing on stimuli-responsive materials in oral diseases were included and carefully evaluated. RESULTS Stimulus-responsive materials are innovative materials that selectively undergo structural changes and trigger drug release based on shifts at the molecular level, such as changes in pH, electric field, magnetic field, or light in the surrounding environment. These changes lead to alterations in the properties of the materials at the macro- or microscopic level. Consequently, stimuli-responsive materials are particularly suitable for treating superficial site diseases and have found extensive applications in antibacterial and anticancer therapies. These characteristics make them convenient and effective for addressing oral diseases. CONCLUSIONS This review aimed to summarize the classification, mechanism of action, and application of stimuli-responsive materials in the treatment of oral diseases, point out the existing limitations, and speculate the prospects for clinical applications. CLINICAL RELEVANCE Our findings may provide useful information of stimuli-responsive materials in oral diseases for dental clinicians.
Collapse
Affiliation(s)
- Xuguang Gao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Yunyang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Jianwen Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Xi Xiang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Jingwen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Sujuan Zeng
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China.
| |
Collapse
|
2
|
Zhang Y, Nie N, Wang H, Tong Z, Xing H, Zhang Y. Smart enzyme catalysts capable of self-separation by sensing the reaction extent. Biosens Bioelectron 2023; 239:115585. [PMID: 37597499 DOI: 10.1016/j.bios.2023.115585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
A smart biocatalyst should dissolve homogeneously for catalysis and recover spontaneously at the end of the reaction. In this study, we present a strategy for preparing self-precipitating enzyme catalysts by exploiting reaction-induced pH decreases, which connect the reaction extent to the catalyst aggregation state. Using poly(methacrylic acid)-functionalized gold nanoparticles as carriers, we construct smart catalysts with three model systems, including the glucose oxidase (GOx)-catalase (CAT) cascade, the alcohol dehydrogenase (ADH)-glucose dehydrogenase (GDH) cascade, and a combination of two lipases. All smart catalysts can self-separate with a nearly 100% recovery efficiency when a certain conversion threshold is reached. The threshold can be adjusted depending on the reaction demand and buffer capacity. By monitoring the optical signals caused by the dissolution/precipitation of smart catalysts, we propose a prototypic automation system that may enable unsupervised batch/fed-batch bioprocessing.
Collapse
Affiliation(s)
- Yinchen Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ning Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoran Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ziyi Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Xing
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Shu T, Hu L, Shen Q, Jiang L, Zhang Q, Serpe MJ. Stimuli-responsive polymer-based systems for diagnostic applications. J Mater Chem B 2021; 8:7042-7061. [PMID: 32743631 DOI: 10.1039/d0tb00570c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive polymers exhibit properties that make them ideal candidates for biosensing and molecular diagnostics. Through rational design of polymer composition combined with new polymer functionalization and synthetic strategies, polymers with myriad responsivities, e.g., responses to temperature, pH, biomolecules, CO2, light, and electricity can be achieved. When these polymers are specifically designed to respond to biomarkers, stimuli-responsive devices/probes, capable of recognizing and transducing analyte signals, can be used to diagnose and treat disease. In this review, we highlight recent state-of-the-art examples of stimuli-responsive polymer-based systems for biosensing and bioimaging.
Collapse
Affiliation(s)
- Tong Shu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Qiming Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Li Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
4
|
Huang X, Hu J, Li Y, Xin F, Qiao R, Davis TP. Engineering Organic/Inorganic Nanohybrids through RAFT Polymerization for Biomedical Applications. Biomacromolecules 2019; 20:4243-4257. [DOI: 10.1021/acs.biomac.9b01158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fangyun Xin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
Hayashi K, Matsuyama T, Ida J. A simple magnetite nanoparticle immobilized thermoresponsive polymer synthesis for heavy metal ion recovery. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Bielas R, Siewniak A, Skonieczna M, Adamiec M, Mielańczyk Ł, Neugebauer D. Choline based polymethacrylate matrix with pharmaceutical cations as co-delivery system for antibacterial and anti-inflammatory combined therapy. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Korde JM, Kandasubramanian B. Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00683] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jay M. Korde
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| | - Balasubramanian Kandasubramanian
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| |
Collapse
|
8
|
Nazlı O, Baygar T, Demirci Dönmez ÇE, Dere Ö, Uysal Aİ, Aksözek A, Işık C, Aktürk S. Antimicrobial and antibiofilm activity of polyurethane/Hypericum perforatum extract (PHPE) composite. Bioorg Chem 2018; 82:224-228. [PMID: 30342304 DOI: 10.1016/j.bioorg.2018.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/01/2022]
Abstract
Microbial accumulation in materials used in sectors such as medical, textile and food can lead to serious diseases, infections and uncontrollable problems. Many of the materials used in the above-mentioned industries have highly sensitive surfaces for microorganisms and cause colonization and biofilm formation. Colonization and biofilm formation threaten human health and they cause many diseases that result in death every year. Antimicrobial materials have an important role in combating pathogens. This article is about a new material with antibiofilm and antimicrobial properties combining polyurethane and Hypericum perforatum extract (PHPE) together. Antimicrobial effect of H. perforatum extract was determined against three clinical pathogens; C. albicans, E. coli and S. aureus. The highest antimicrobial activity of H. perforatum extract was found against S. aureus strain. Antibiofilm analysis results revealed that H. perforatum was also inhibited by the biofilm formation of S. aureus by 56.85%. The combination of polyurethane material and H. perforatum extract (PHPE) resulted in 92.85% decrease in S. aureus biofilm compared to control group. The reduction of S. aureus after H. perforatum incorporation was revealed by Scanning Electron Microscopy (SEM) study. The results show that the polyurethane material combined with H. perforatum extract inhibits the formation of S. aureus biofilm.
Collapse
Affiliation(s)
- Okay Nazlı
- Department of General Surgery, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Tuba Baygar
- Research and Application Center for Research Laboratories, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | | | - Özcan Dere
- Department of General Surgery, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Ali İhsan Uysal
- Department of Anesthesia and Reanimation, Muğla Sıtkı Koçman University Training and Research Hospital, 48000 Muğla, Turkey
| | - Alper Aksözek
- Department of Medical Microbiology, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Ceyhun Işık
- Department of Chemistry, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Selçuk Aktürk
- Department of Physics, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey.
| |
Collapse
|
9
|
Enzyme-assisted polymer film degradation-enabled biomolecule sensing with poly (N-isopropylacrylamide)-based optical devices. Anal Chim Acta 2018; 999:139-143. [DOI: 10.1016/j.aca.2017.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
|
10
|
Umapathi R, Reddy PM, Rani A, Venkatesu P. Influence of additives on thermoresponsive polymers in aqueous media: a case study of poly(N-isopropylacrylamide). Phys Chem Chem Phys 2018; 20:9717-9744. [DOI: 10.1039/c7cp08172c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermoresponsive polymers (TRPs) in different solvent media have been studied over a long period and are important from both scientific and technical points of view.
Collapse
Affiliation(s)
| | - P. Madhusudhana Reddy
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
- Department of Chemical Engineering
| | - Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | | |
Collapse
|
11
|
Lee SH, Shim KY, Kim B, Sung JH. Hydrogel-based three-dimensional cell culture for organ-on-a-chip applications. Biotechnol Prog 2017; 33:580-589. [PMID: 28247962 DOI: 10.1002/btpr.2457] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/23/2016] [Indexed: 12/29/2022]
Abstract
Recent studies have reported that three-dimensionally cultured cells have more physiologically relevant functions than two-dimensionally cultured cells. Cells are three-dimensionally surrounded by the extracellular matrix (ECM) in complex in vivo microenvironments and interact with the ECM and neighboring cells. Therefore, replicating the ECM environment is key to the successful cell culture models. Various natural and synthetic hydrogels have been used to mimic ECM environments based on their physical, chemical, and biological characteristics, such as biocompatibility, biodegradability, and biochemical functional groups. Because of these characteristics, hydrogels have been combined with microtechnologies and used in organ-on-a-chip applications to more closely recapitulate the in vivo microenvironment. Therefore, appropriate hydrogels should be selected depending on the cell types and applications. The porosity of the selected hydrogel should be controlled to facilitate the movement of nutrients and oxygen. In this review, we describe various types of hydrogels, external stimulation-based gelation of hydrogels, and control of their porosity. Then, we introduce applications of hydrogels for organ-on-a-chip. Last, we also discuss the challenges of hydrogel-based three-dimensional cell culture techniques and propose future directions. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:580-589, 2017.
Collapse
Affiliation(s)
- Seung Hwan Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Kyu Young Shim
- Chemical Engineering, Hongik University, Seoul, 121-791, Republic of Korea
| | - Bumsang Kim
- Chemical Engineering, Hongik University, Seoul, 121-791, Republic of Korea
| | - Jong Hwan Sung
- Chemical Engineering, Hongik University, Seoul, 121-791, Republic of Korea
| |
Collapse
|
12
|
Zhang X, Brodus D, Hollimon V, Hu H. A brief review of recent developments in the designs that prevent bio-fouling on silicon and silicon-based materials. Chem Cent J 2017; 11:18. [PMID: 28261323 PMCID: PMC5318316 DOI: 10.1186/s13065-017-0246-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/14/2017] [Indexed: 12/26/2022] Open
Abstract
Silicon and silicon-based materials are essential to our daily life. They are widely used in healthcare and manufacturing. However, silicon and silicon-based materials are susceptible to bio-fouling, which is of great concern in numerous applications. To date, interdisciplinary research in surface science, polymer science, biology, and engineering has led to the implementation of antifouling strategies for silicon-based materials. However, a review to discuss those antifouling strategies for silicon-based materials is lacking. In this article, we summarized two major approaches involving the functionalization of silicon and silicon-based materials with molecules exhibiting antifouling properties, and the fabrication of silicon-based materials with nano- or micro-structures. Both approaches lead to a significant reduction in bio-fouling. We critically reviewed the designs that prevent fouling due to proteins, bacteria, and marine organisms on silicon and silicon-based materials. Graphical abstractStrategies used in the designs that prevent bio-fouling on silicon and silicon-based materials.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Department of Mathematics, Sciences and Technology, Paine College, 1235 Fifteenth Street, Augusta, GA 30901 USA
| | - DaShan Brodus
- Department of Mathematics, Sciences and Technology, Paine College, 1235 Fifteenth Street, Augusta, GA 30901 USA
| | - Valerie Hollimon
- Department of Mathematics, Sciences and Technology, Paine College, 1235 Fifteenth Street, Augusta, GA 30901 USA
| | - Hongmei Hu
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan, 316021 China
| |
Collapse
|
13
|
Abstract
Responsive polymer-based materials are capable of altering their chemical and/or physical properties upon exposure to external stimuli. This review highlights their use for sensing and biosensing, drug delivery, and artificial muscles/actuators.
Collapse
Affiliation(s)
- Menglian Wei
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Yongfeng Gao
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Xue Li
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | |
Collapse
|
14
|
Vancoillie G, Hoogenboom R. Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery. SENSORS 2016; 16:s16101736. [PMID: 27775572 PMCID: PMC5087521 DOI: 10.3390/s16101736] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/03/2023]
Abstract
Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium.
| |
Collapse
|
15
|
Recent Advances in Antimicrobial Polymers: A Mini-Review. Int J Mol Sci 2016; 17:ijms17091578. [PMID: 27657043 PMCID: PMC5037843 DOI: 10.3390/ijms17091578] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Human safety and well-being is threatened by microbes causing numerous infectious diseases resulting in a large number of deaths every year. Despite substantial progress in antimicrobial drugs, many infectious diseases remain difficult to treat. Antimicrobial polymers offer a promising antimicrobial strategy for fighting pathogens and have received considerable attention in both academic and industrial research. This mini-review presents the advances made in antimicrobial polymers since 2013. Antimicrobial mechanisms exhibiting either passive or active action and polymer material types containing bound or leaching antimicrobials are introduced. This article also addresses the applications of these antimicrobial polymers in the medical, food, and textile industries.
Collapse
|
16
|
Vancoillie G, Brooks WLA, Mees MA, Sumerlin BS, Hoogenboom R. Synthesis of novel boronic acid-decorated poly(2-oxazoline)s showing triple-stimuli responsive behavior. Polym Chem 2016. [DOI: 10.1039/c6py01437b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of novel boronic-acid decorated poly(2-oxazoline)s showing a glucose- and pH dependent thermal transition is reported.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
- George & Josephine Butler Polymer Research Laboratory
| | - William L. A. Brooks
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Maarten A. Mees
- Supramolecular Chemistry group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Richard Hoogenboom
- Supramolecular Chemistry group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| |
Collapse
|
17
|
Feng Q, Tang D, Lv H, Zhang W, Li W. Temperature-responsive zinc oxide nanorods arrays grafted with poly(N-isopropylacrylamide) via SI-ATRP. RSC Adv 2015. [DOI: 10.1039/c5ra07301d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanocomposites based on ZnO nanorods, with photocatalysis and temperature responsibility, could be fabricated by grafting poly(N-isopropylacrylamide) PNIPAM via surface-initiated atom transfer radical polymerization (SI-ATRP).
Collapse
Affiliation(s)
- Qian Feng
- Department of Chemistry
- School of Science
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Dongyan Tang
- Department of Chemistry
- School of Science
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Haitao Lv
- Department of Chemistry
- School of Science
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Weile Zhang
- Department of Chemistry
- School of Science
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Wenbo Li
- Department of Chemistry
- School of Science
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|