1
|
Yin B, Wang X, Liu Y, Fang J, Wang WX. How fish intestinal cells responded to dietary methylmercury exposure? A single-cell transcriptomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125967. [PMID: 40043872 DOI: 10.1016/j.envpol.2025.125967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Fish intestine is not only an important digestive and immune organ, but also serves as the first barrier to defend against methylmercury (MeHg) toxicity. Numerous studies have examined the responses of intestine to MeHg, whereas the heterogeneous responses of intestinal cells have not been addressed. In this study, the gilthead seabream were exposed to dietary MeHg, and the gene expression profiles of different intestinal cell populations were examined using scRNA-seq technique. We demonstrated that among the 14 cell types identified, enterocytes, macrophages, T cells and goblet cells were the primary target cell populations exhibiting specific responses to MeHg. Enterocytes appeared to play the most important role in the MeHg transport across the intestinal epithelium as well as intracellular storage. The immune pathways of macrophages and T cells were suppressed by MeHg, which also interfered with the mucus production and secretion in the goblet cells. Furthermore, MeHg not only affected the cell-cell adhesion of the target cells, but also resulted in disorder of lipid metabolism and immune function, thereby leading to increased susceptibility to pathogenic infections. This study provides an important understanding of the specific responses of intestinal cells to MeHg exposure at the cellular level.
Collapse
Affiliation(s)
- Bingxin Yin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Junhao Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
2
|
Shang Y, Wang Z, Xi L, Wang Y, Liu M, Feng Y, Wang J, Wu Q, Xiang X, Chen M, Ding Y. Droplet-based single-cell sequencing: Strategies and applications. Biotechnol Adv 2024; 77:108454. [PMID: 39271031 DOI: 10.1016/j.biotechadv.2024.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Notable advancements in single-cell omics technologies have not only addressed longstanding challenges but also enabled unprecedented studies of cellular heterogeneity with unprecedented resolution and scale. These strides have led to groundbreaking insights into complex biological systems, paving the way for a more profound comprehension of human biology and diseases. The droplet microfluidic technology has become a crucial component in many single-cell sequencing workflows in terms of throughput, cost-effectiveness, and automation. Utilizing a microfluidic chip to encapsulate and profile individual cells within droplets has significantly improved single-cell research. Therefore, this review aims to comprehensively elaborate the droplet microfluidics-assisted omics methods from a single-cell perspective. The strategies for using droplet microfluidics in the realms of genomics, epigenomics, transcriptomics, and proteomics analyses are first introduced. On this basis, the focus then turns to the latest applications of this technology in different sequencing patterns, including mono- and multi-omics. Finally, the challenges and further perspectives of droplet-based single-cell sequencing in both foundational research and commercial applications are discussed.
Collapse
Affiliation(s)
- Yuting Shang
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhengzheng Wang
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Liqing Xi
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yantao Wang
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meijing Liu
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ying Feng
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinran Xiang
- Jiangsu Key Laboratory of Huaiyang Food Safety and Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China; Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China.
| | - Moutong Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Yan Z, Wang P, Yang Q, Gun S. Single-Cell RNA Sequencing Reveals an Atlas of Hezuo Pig Testis Cells. Int J Mol Sci 2024; 25:9786. [PMID: 39337274 PMCID: PMC11431743 DOI: 10.3390/ijms25189786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Spermatogenesis is a complex biological process crucial for male reproduction and is characterized by intricate interactions between testicular somatic cells and germ cells. Due to the cellular heterogeneity of the testes, investigating different cell types across developmental stages has been challenging. Single-cell RNA sequencing (scRNA-seq) has emerged as a valuable approach for addressing this limitation. Here, we conducted an unbiased transcriptomic study of spermatogenesis in sexually mature 4-month-old Hezuo pigs using 10× Genomics-based scRNA-seq. A total of 16,082 cells were collected from Hezuo pig testes, including germ cells (spermatogonia (SPG), spermatocytes (SPCs), spermatids (SPTs), and sperm (SP)) and somatic cells (Sertoli cells (SCs), Leydig cells (LCs), myoid cells (MCs), endothelial cells (ECs), and natural killer (NK) cells/macrophages). Pseudo-time analysis revealed that LCs and MCs originated from common progenitors in the Hezuo pig. Functional enrichment analysis indicated that the differentially expressed genes (DEGs) in the different types of testicular germ cells were enriched in the PI3K-AKT, Wnt, HIF-1, and adherens junction signaling pathways, while the DEGs in testicular somatic cells were enriched in ECM-receptor interaction and antigen processing and presentation. Moreover, genes related to spermatogenesis, male gamete generation, sperm part, sperm flagellum, and peptide biosynthesis were expressed throughout spermatogenesis. Using immunohistochemistry, we verified several stage-specific marker genes (such as UCHL1, WT1, SOX9, and ACTA2) for SPG, SCs, and MCs. By exploring the changes in the transcription patterns of various cell types during spermatogenesis, our study provided novel insights into spermatogenesis and testicular cells in the Hezuo pig, thereby laying the foundation for the breeding and preservation of this breed.
Collapse
Affiliation(s)
| | | | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (P.W.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (P.W.)
| |
Collapse
|
4
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
5
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
6
|
Lv J, Wang XY, Zhou XY, Li DW, Qian RC. Specially Resolved Single Living Cell Perfusion and Targeted Fluorescence Labeling Based on Nanopipettes. Anal Chem 2022; 94:13860-13868. [PMID: 36162134 DOI: 10.1021/acs.analchem.2c02537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted delivery and labeling of single living cells in heterogeneous cell populations are of great importance to understand the molecular biology and physiological functions of individual cells. However, it remains challenging to perfuse fluorescence markers into single living cells with high spatial and temporal resolution without interfering neighboring cells. Here, we report a single cell perfusion and fluorescence labeling strategy based on nanoscale glass nanopipettes. With the nanoscale tip hole of 100 nm, the use of nanopipettes allows special perfusion and high-resolution fluorescence labeling of different subcellular regions in single cells of interest. The dynamic of various fluorescent probes has been studied to exemplify the feasibility of nanopipette-dependent targeted delivery. According to experimental results, the cytoplasm labeling of Sulfo-Cyanine5 and fluorescein isothiocyanate is mainly based on the Brownian movement due to the dyes themselves and does not have a targeting ability, while the nucleus labeling of 4',6-diamidino-2-phenylindole (DAPI) is originated from the adsorption between DAPI and DNA in the nucleus. From the finite element simulation, the precise manipulation of intracellular delivery is realized by controlling the electro-osmotic flow inside the nanopipettes, and the different delivery modes between nontargeting dyes and nucleus-targeting dyes were compared, showcasing the valuable ability of nanopipette-based method for the analysis of specially defined subcellular regions and the potential applications for single cell surgery, subcellular manipulation, and gene delivery.
Collapse
Affiliation(s)
- Jian Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xin-Yue Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Misra P, Jadhav AR, Bapat SA. Single-cell sequencing: A cutting edge tool in molecular medical research. Med J Armed Forces India 2022; 78:S7-S13. [PMID: 36147383 PMCID: PMC9485843 DOI: 10.1016/j.mjafi.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022] Open
Abstract
The rapid development of advanced high throughput technologies and introduction of high resolution "omics" data through analysis of biological molecules has revamped medical research. Single-cell sequencing in recent years, is in fact revolutionising the field by providing a deeper, spatio-temporal analyses of individual cells within tissues and their relevance to disease. Like conventional sequencing, the single-cell approach deciphers the sequence of nucleotides in a given Deoxyribose Nucleic Acid (DNA), Ribose Nucleic Acid (RNA), Micro Ribose Nucleic Acid (miRNA), epigenetically modified DNA or chromatin DNA; however, the unit of analyses is changed to single cells rather than the entire tissue. Further, a large number of single cells analysed from a single tissue generate a unique holistic perception capturing all kinds of perturbations across different cells in the tissue that increases the precision of data. Inherently, execution of the technique generates a large amount of data, which is required to be processed in a specific manner followed by customised bioinformatic analysis to produce meaningful results. The most crucial role of single-cell sequencing technique is in elucidating the inter-cell genetic, epigenetic, transcriptomic and proteomic heterogeneity in health and disease. The current review presents a brief overview of this cutting-edge technology and its applications in medical research.
Collapse
Affiliation(s)
- Pratibha Misra
- Senior Advisor (Pathology & Biochemistry), 151 Base Hospital, Guwahati, India
| | - Amruta R. Jadhav
- Senior Research Fellow, National Centre for Cell Science (NCCS), Pune, India
| | - Sharmila A. Bapat
- Professor & Head, Ovarian Cancer Program, National Centre for Cell Science, (NCCS), Pune, India
| |
Collapse
|
8
|
Guo L, Yi X, Chen L, Zhang T, Guo H, Chen Z, Cheng J, Cao Q, Liu H, Hou C, Qi L, Zhu Z, Liu Y, Kong R, Zhang C, Zhou X, Zhang Z, Song T, Xue R, Zhang N. Single-Cell DNA Sequencing Reveals Punctuated and Gradual Clonal Evolution in Hepatocellular Carcinoma. Gastroenterology 2022; 162:238-252. [PMID: 34481846 DOI: 10.1053/j.gastro.2021.08.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Copy number alterations (CNAs), elicited by genome instability, are a major source of intratumor heterogeneity. How CNAs evolve in hepatocellular carcinoma (HCC) remains unknown. METHODS We performed single-cell DNA sequencing (scDNA-seq) on 1275 cells isolated from 10 patients with HCC, ploidy-resolved scDNA-seq on 356 cells from 1 additional patient, and single-cell RNA sequencing on 27,344 cells from 3 additional patients. Three statistical fitting models were compared to investigate the CNA accumulation pattern. RESULTS Cells in the tumor were categorized into the following 3 subpopulations: euploid, pseudoeuploid, and aneuploid. Our scDNA-seq analysis revealed that CNA accumulation followed a dual-phase copy number evolution model, that is, a punctuated phase followed by a gradual phase. Patients who exhibited prolonged gradual phase showed higher intratumor heterogeneity and worse disease-free survival. Integrating bulk RNA sequencing of 17 patients with HCC, published datasets of 1196 liver tumors, and immunohistochemical staining of 202 HCC tumors, we found that high expression of CAD, a gene involved in pyrimidine synthesis, was correlated with rapid tumorigenesis and reduced survival. The dual-phase copy number evolution model was validated by our single-cell RNA sequencing data and published scDNA-seq datasets of other cancer types. Furthermore, ploidy-resolved scDNA-seq revealed the common clonal origin of diploid- and polyploid-aneuploid cells, suggesting that polyploid tumor cells were generated by whole genome doubling of diploid tumor cells. CONCLUSIONS Our work revealed a novel dual-phase copy number evolution model, showed HCC with longer gradual phase was more severe, identified CAD as a promising biomarker for early recurrence of HCC, and supported the diploid origin of polyploid HCC.
Collapse
Affiliation(s)
- Lin Guo
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- School of Biomedical Engineering and Technology, Department of Bioinformatics, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lu Chen
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ti Zhang
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hua Guo
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ziye Chen
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinghui Cheng
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Qi Cao
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Hengkang Liu
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Chunyu Hou
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiyan Zhu
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yucun Liu
- Division of General Surgery, Peking University First Hospital, Beijing, China
| | - Ruirui Kong
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Chong Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Xiaohua Zhou
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Zemin Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ruidong Xue
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China.
| | - Ning Zhang
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Translational Cancer Research Center, Peking University First Hospital, Beijing, China.
| |
Collapse
|
9
|
Wu JJ, Zhu S, Gu F, Valencak TG, Liu JX, Sun HZ. Cross-tissue single-cell transcriptomic landscape reveals the key cell subtypes and their potential roles in the nutrient absorption and metabolism in dairy cattle. J Adv Res 2021; 37:1-18. [PMID: 35499046 PMCID: PMC9039752 DOI: 10.1016/j.jare.2021.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Discover 55 cell types and their specific markers in the first single-cell atlas of cattle; Identify and verify 3 epithelial progenitor-like cell subtypes in the forestomach Reveal vital but nonimmune functions of neutrophils in the mammary gland; Uncover key cell subtypes with preferential nutrient uptake; Find Th17 cells regulate epithelial cells responding to nutrient transport in the forestomach.
Introduction Dairy cattle are a vitally important ruminant in meeting the demands for high-quality animal protein production worldwide. The complicated biological process of converting human indigestible biomass into highly digestible and nutritious milk is orchestrated by various tissues. However, poorly understanding of the cellular composition and function of the key metabolic tissues hinders the improvement of health and performance of domestic ruminants. Objectives The cellular heterogeneity, metabolic features, interactions across ten tissue types of lactating dairy cattle were studied at single-cell resolution in the current study. Methods Unbiased single-cell RNA-sequencing and analysis were performed on the rumen, reticulum, omasum, abomasum, ileum, rectum, liver, salivary gland, mammary gland, and peripheral blood of lactating dairy cattle. Immunofluorescences and fluorescence in situ hybridization were performed to verify cell identity. Results In this study, we constructed a single-cell landscape covering 88,013 high-quality (500 < genes < 4,000, UMI < 50, 000, and mitochondrial gene ratio < 40% or 15%) single cells and identified 55 major cell types in lactating dairy cattle. Our systematic survey of the gene expression profiles and metabolic features of epithelial cells related to nutrient transport revealed cell subtypes that have preferential absorption of different nutrients. Importantly, we found that T helper type 17 (Th17) cells (highly expressing CD4 and IL17A) were specifically enriched in the forestomach tissues and predominantly interacted with the epithelial cell subtypes with high potential uptake capacities of short-chain fatty acids through IL-17 signaling. Furthermore, the comparison between IL17RAhighIL17RChigh cells (epithelial cells with IL17RA and IL17RC expression levels both greater than 0.25) and other cells explained the importance of Th17 cells in regulating the epithelial cellular transcriptional response to nutrient transport in the forestomach. Conclusion The findings enhance our understanding of the cellular biology of ruminants and open new avenues for improved animal production of dairy cattle.
Collapse
Affiliation(s)
- Jia-Jin Wu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Fengfei Gu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Teresa G. Valencak
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou 310058, China
- Corresponding author at: Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Lin S, Liu Y, Zhang M, Xu X, Chen Y, Zhang H, Yang C. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. LAB ON A CHIP 2021; 21:3829-3849. [PMID: 34541590 DOI: 10.1039/d1lc00607j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cells are the basic units of life with vast heterogeneity. Single-cell transcriptomics unveils cell-to-cell gene expression variabilities, discovers novel cell types, and uncovers the critical roles of cellular heterogeneity in biological processes. The recent advances in microfluidic technologies have greatly accelerated the development of single-cell transcriptomics with regard to throughput, sensitivity, cost, and automation. In this article, we review state-of-the-art microfluidic single-cell transcriptomics, with a focus on the methodologies. We first summarize six typical microfluidic platforms for isolation and transcriptomic analysis of single cells. Then the on-going trend of microfluidic transcriptomics towards multimodal omics, which integrates transcriptomics with other omics to provide more comprehensive pictures of gene expression networks, is discussed. We also highlight single-cell spatial transcriptomics and single-cell temporal transcriptomics that provide unprecedented spatiotemporal resolution to reveal transcriptomic dynamics in space and time, respectively. The emerging applications of microfluidic single-cell transcriptomics are also discussed. Finally, we discuss the current challenges to be tackled and provide perspectives on the future development of microfluidic single-cell transcriptomics.
Collapse
Affiliation(s)
- Shichao Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yilong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mingxia Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yingwen Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
11
|
Chen T, Zhou H, Xiong L. Single cell sequencing technology and its application in Hypoxic ischemic encephalopathy research. IBRAIN 2021; 7:227-234. [PMID: 37786794 PMCID: PMC10528982 DOI: 10.1002/j.2769-2795.2021.tb00086.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/28/2021] [Accepted: 09/22/2021] [Indexed: 10/04/2023]
Abstract
Hypoxic ischemic encephalopathy (HIE) is the common etiology of neonatal morbidity and mortality, which exerts a negative seriously influence for the growth and development of children, and even threatens their life. Therapeutic methods are timely not adopted, it will cause serious irreversible damage to the neonatal nervous system. As no promising therapeutic strategies exist currently, it is important to elucidate the pathological mechanism for HIE, which requires us to explore the nucleic acid molecules, protein, and cell function in HIE patients, and to understand the process of the onset and progression, then research and invent better treatment methods and therapeutic drugs. Single cell sequencing (SCS) exhibits an distinctive advantages in cells research because of the particularity of each cell. This method solves an puzzle about heterogeneit, which could not be solved with multi cell sample research, and provides a new idea and perspective for the un-elucidated and events further analyzed, such as the behaviors, mechanisms and the relationship between single cell and organism in cell population. It also plays an extremely significant role in the basic research and precision medicine. Some studies have suggested that SCS serves a vital function in the study of HIE. Therefore, this review is aim to elaborate SCS and hypoxic-ischemic brain injury, and trace the role of microglia in HIE, and prospect its unknown and undiscovered mechanism by SCS.
Collapse
Affiliation(s)
- Ting‐Bao Chen
- Laboratory Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| | - Hong‐Su Zhou
- Department of AnesthesiologyGraduate School of Zunyi Medical UniversityZunyiGuizhouChina
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Liu‐Lin Xiong
- Clinical and Health Sciences, University of South AustraliaAdelaide5000South AustraliaAustralia
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
12
|
Xiang X, Liu Z, Zhang C, Li Z, Gao J, Zhang C, Cao Q, Cheng J, Liu H, Chen D, Cheng Q, Zhang N, Xue R, Bai F, Zhu J. IDH Mutation Subgroup Status Associates with Intratumor Heterogeneity and the Tumor Microenvironment in Intrahepatic Cholangiocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101230. [PMID: 34250753 PMCID: PMC8425914 DOI: 10.1002/advs.202101230] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/01/2021] [Indexed: 05/03/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is highly heterogeneous. Here, the authors perform exome sequencing and bulk RNA sequencing on 73 tumor regions from 14 ICC patients to portray the multi-faceted intratumor heterogeneity (ITH) landscape of ICC. The authors show that ITH is highly concordant across genomic, transcriptomic, and immune levels. Comparison of these data to 8 published datasets reveals significantly higher degrees of ITH in ICC than hepatocellular carcinoma. Remarkably, the authors find that high-ITH tumors highly overlap with the IDH (isocitrate dehydrogenase)-mutant subgroup (IDH-SG), comprising of IDH-mutated tumors and IDH-like tumors, that is, those IDH-wildtype tumors that exhibit similar molecular profiles to the IDH-mutated ones. Furthermore, IDH-SG exhibits less T cell infiltration and lower T cell cytotoxicity, indicating a colder tumor microenvironment (TME). The higher ITH and colder TME of IDH-SG are successfully validated by single-cell RNA sequencing on 17 503 cells from 4 patients. Collectively, the study shows that IDH mutant subgroup status, rather than IDH mutation alone, is associated with ITH and the TME of ICC tumors. The results highlight that IDH-like patients may also benefit from IDH targeted therapies and provide important implications for the diagnosis and treatment of ICC.
Collapse
Affiliation(s)
- Xiao Xiang
- Department of Hepatobiliary Surgery, Peking University People's HospitalBeijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Ziyang Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life SciencesPeking UniversityBeijing100871China
- Beijing Advanced Innovation Center for Genomics (ICG)Peking UniversityBeijing100871China
| | - Chong Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life SciencesPeking UniversityBeijing100871China
- Beijing Advanced Innovation Center for Genomics (ICG)Peking UniversityBeijing100871China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's HospitalBeijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's HospitalBeijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Changkun Zhang
- Department of Hepatobiliary Surgery, Peking University People's HospitalBeijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Qi Cao
- Translational Cancer Research CenterPeking University First HospitalBeijing100034China
| | - Jinghui Cheng
- Translational Cancer Research CenterPeking University First HospitalBeijing100034China
| | - Hengkang Liu
- Translational Cancer Research CenterPeking University First HospitalBeijing100034China
| | - Dingbao Chen
- Department of Hepatobiliary Surgery, Peking University People's HospitalBeijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's HospitalBeijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| | - Ning Zhang
- Translational Cancer Research CenterPeking University First HospitalBeijing100034China
| | - Ruidong Xue
- Translational Cancer Research CenterPeking University First HospitalBeijing100034China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life SciencesPeking UniversityBeijing100871China
- Beijing Advanced Innovation Center for Genomics (ICG)Peking UniversityBeijing100871China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's HospitalBeijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver CancerBeijing100044China
| |
Collapse
|
13
|
Adil A, Kumar V, Jan AT, Asger M. Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis. Front Neurosci 2021; 15:591122. [PMID: 33967674 PMCID: PMC8100238 DOI: 10.3389/fnins.2021.591122] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Rapid cost drops and advancements in next-generation sequencing have made profiling of cells at individual level a conventional practice in scientific laboratories worldwide. Single-cell transcriptomics [single-cell RNA sequencing (SC-RNA-seq)] has an immense potential of uncovering the novel basis of human life. The well-known heterogeneity of cells at the individual level can be better studied by single-cell transcriptomics. Proper downstream analysis of this data will provide new insights into the scientific communities. However, due to low starting materials, the SC-RNA-seq data face various computational challenges: normalization, differential gene expression analysis, dimensionality reduction, etc. Additionally, new methods like 10× Chromium can profile millions of cells in parallel, which creates a considerable amount of data. Thus, single-cell data handling is another big challenge. This paper reviews the single-cell sequencing methods, library preparation, and data generation. We highlight some of the main computational challenges that require to be addressed by introducing new bioinformatics algorithms and tools for analysis. We also show single-cell transcriptomics data as a big data problem.
Collapse
Affiliation(s)
- Asif Adil
- Department of Computer Sciences, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mohammed Asger
- Department of Computer Sciences, Baba Ghulam Shah Badshah University, Rajouri, India
| |
Collapse
|
14
|
Abstract
Microfluidics platforms can program small amounts of fluids to execute a bio-protocol, and thus, can automate the work of a technician and also integrate a large part of laboratory equipment. Although most microfluidic systems have considerably reduced the size of a laboratory, they are still benchtop units, of a size comparable to a desktop computer. In this paper, we argue that achieving true mobility in microfluidics would revolutionize the domain by making laboratory services accessible during traveling or even in daily situations, such as sport and outdoor activities. We review the existing efforts to achieve mobility in microfluidics, and we discuss the conditions mobile biochips need to satisfy. In particular, we show how we adapted an existing biochip for mobile use, and we present the results when using it during a train ride. Based on these results and our systematic discussion, we identify the challenges that need to be overcome at technical, usability and social levels. In analogy to the history of computing, we make some predictions on the future of mobile biochips. In our vision, mobile biochips will disrupt how people interact with a wide range of healthcare processes, including medical testing and synthesis of on-demand medicine.
Collapse
Affiliation(s)
- Mirela Alistar
- Atlas Institute and Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309-0320, USA.
| |
Collapse
|
15
|
Deng X, Qiu Q, He K, Cao X. The seekers: how epigenetic modifying enzymes find their hidden genomic targets in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:75-81. [PMID: 29864678 DOI: 10.1016/j.pbi.2018.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/03/2018] [Accepted: 05/12/2018] [Indexed: 05/23/2023]
Abstract
Epigenetic regulation plays fundamental roles in modulating chromatin-based processes and shaping the epigenome in multicellular eukaryotes, including plants. How epigenetic factors recognize their target loci hiding in the vast genomic DNA sequence remains a long-standing mystery. During the past several years, a growing body of work has revealed the complex, dynamic, and diverse chromatin-targeting mechanisms of these epigenetic factors. In this review, we focus on recent advances in understanding the recruitment of epigenetic factors to specific genomic regions, based on data from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Qiu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaixuan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Deng X, Cao X. Roles of pre-mRNA splicing and polyadenylation in plant development. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:45-53. [PMID: 27866125 DOI: 10.1016/j.pbi.2016.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Plants possess amazing plasticity of growth and development, allowing them to adjust continuously and rapidly to changes in the environment. Over the past two decades, numerous molecular studies have illuminated the role of transcriptional regulation in plant development and environmental responses. However, emerging studies in Arabidopsis have uncovered an unexpectedly widespread role for post-transcriptional regulation in development and responses to environmental changes. In this review, we summarize recent discoveries detailing the contribution of two post-transcriptional mechanisms, pre-mRNA splicing and polyadenylation, to the regulation of plant development, with an emphasis on the control of flowering time. We also discuss future directions in the field and new technological approaches.
Collapse
Affiliation(s)
- Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Deng X, Song X, Wei L, Liu C, Cao X. Epigenetic regulation and epigenomic landscape in rice. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Epigenetic regulation has been implicated in the control of complex agronomic traits in rice (Oryza sativa), a staple food crop and model monocot plant. Recent advances in high-throughput sequencing and the moderately complex genome of rice have made it possible to study epigenetic regulation in rice on a genome-wide scale. This review discusses recent advances in our understanding of epigenetic regulation in rice, with an emphasis on the roles of key epigenetic regulators, the epigenomic landscape, epigenetic variation, transposon repression, and plant development.
Collapse
Affiliation(s)
- Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liya Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
|
19
|
Single-cell sequencing delivers hematopoietic stem cell specification. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|