1
|
Wu Y, Ruan H, Dong Z, Zhao R, Yu J, Tang X, Kou X, Zhang X, Wu M, Luo F, Yuan J, Fang X. Fluorescent Polymer Dot-Based Multicolor Stimulated Emission Depletion Nanoscopy with a Single Laser Beam Pair for Cellular Tracking. Anal Chem 2020; 92:12088-12096. [PMID: 32867488 DOI: 10.1021/acs.analchem.0c02821] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stimulated emission depletion (STED) nanoscopy provides subdiffraction resolution while preserving the benefits of fluorescence confocal microscopy in live-cell imaging. However, there are several challenges for multicolor STED nanoscopy, including sophisticated microscopy architectures, fast photobleaching, and cross talk of fluorescent probes. Here, we introduce two types of nanoscale fluorescent semiconducting polymer dots (Pdots) with different emission wavelengths: CNPPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovinylene-1,4-phenylene)]) Pdots and PDFDP (poly[{9,9-dihexyl-2,7-bis(1-cyanovinylene)fluorene}-alt-co-{2,5-bis (N,N'-diphenylamino)-1,4-phenylene}]) Pdots, for dual-color STED bioimaging and cellular tracking. Besides bright fluorescence, strong photostability, and easy bioconjugation, these Pdots have large Stokes shifts, which make it possible to share both excitation and depletion beams, thus requiring only a single pair of laser beams for the dual-color STED imaging. Long-term tracking of cellular organelles by the Pdots has been achieved in living cells, and the dynamic interaction of endosomes derived from clathrin-mediated and caveolae-mediated endocytic pathways has been monitored for the first time to propose their interaction models. These results demonstrate the promise of Pdots as excellent probes for live-cell multicolor STED nanoscopy.
Collapse
Affiliation(s)
- Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hefei Ruan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Yu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaojun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Manchen Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
2
|
Li N, Zhao R, Sun Y, Ye Z, He K, Fang X. Single-molecule imaging and tracking of molecular dynamics in living cells. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nww055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Unlike the ensemble-averaging measurements, the single-molecule imaging and tracking (SMIT) in living cells provides the real-time quantitative information about the locations, kinetics, dynamics and interactions of individual molecules in their native environments with high spatiotemporal resolution and minimal perturbation. The past decade has witnessed a transforming development in the methods of SMIT with living cells, including fluorescent probes, labeling strategies, fluorescence microscopy, and detection and tracking algorithms. In this review, we will discuss these aspects with a particular focus on their recent advancements. We will then describe representative single-molecule studies to illustrate how the single-molecule approaches can be applied to monitor biomolecular interaction/reaction dynamics, and extract the molecular mechanistic information for different cellular systems.
Collapse
Affiliation(s)
- Nan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahong Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangmin He
- Department of Cell Biology, Harvard Medical School, and Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Lin L, Wang X, Guo Y, Ren K, Li X, Jing L, Yue X, Zhang Q, Dai Z. Hybrid bicelles as a pH-sensitive nanocarrier for hydrophobic drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra18112k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stabilized disc-like hybrid bicelles provide pH-sensitive release, preferable cellular uptake, tumor accumulation and therapeutic effect in vitro and in vivo.
Collapse
Affiliation(s)
- Li Lin
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiaoyou Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System
- College of Engineering
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| | - Yanyu Guo
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Kuan Ren
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiaoda Li
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Lijia Jing
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiuli Yue
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System
- College of Engineering
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| | - Zhifei Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System
- College of Engineering
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| |
Collapse
|