1
|
Liu X, Zhang X, Feng R, Ren X, Wu D, Liu X, Liu L, Wei Q. Microfluidic Immunosensor Platform for Sensitive Detection of Human Epidermal Growth Factor Receptor-2 Based on Enhanced Cathode Electrochemiluminescence of Bimetallic Nanoclusters. Anal Chem 2024; 96:8390-8398. [PMID: 38716680 DOI: 10.1021/acs.analchem.3c05561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In this work, a microfluidic immunosensor chip was developed by incorporating microfluidic technology with electrochemiluminescence (ECL) for sensitive detection of human epidermal growth factor receptor-2 (HER2). The immunosensor chip can achieve robust reproducibility in mass production by integrating multiple detection units in a series. Notably, nanoscale materials can be better adapted to microfluidic systems, greatly enhancing the accuracy of the immunosensor chip. Ag@Au NCs closed by glutathione (GSH) were introduced in the ECL microfluidic immunosensor system with excellent and stable ECL performance. The synthesized CeO2-Au was applied as a coreaction promoter in the ECL signal amplification system, which made the result of HER2 detection more reliable. In addition, the designed microfluidic immunosensor chip integrated the biosensing system into a microchip, realizing rapid and accurate detection of HER2 by its high throughput and low usage. The developed short peptide ligand NARKFKG (NRK) achieved an effective connection between the antibody and nanocarrier for improving the detection efficiency of the sensor. The immunosensor chip had better storage stability and sensitivity than traditional detection methods, with a wide detection range from 10 fg·mL-1 to 100 ng·mL-1 and a low detection limit (LOD) of 3.29 fg·mL-1. In general, a microfluidic immunosensor platform was successfully constructed, providing a new idea for breast cancer (BC) clinical detection.
Collapse
Affiliation(s)
- Xuening Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Wang A, Zhou Y, Chen Y, Zhou J, You X, Liu H, Liu Y, Ding P, Qi Y, Liang C, Zhu X, Zhang Y, Liu E, Zhang G. Electrochemical immunosensor for ultrasensitive detection of human papillomaviruse type 16 L1 protein based on Ag@AuNPs-GO/SPA. Anal Biochem 2023; 660:114953. [PMID: 36243135 DOI: 10.1016/j.ab.2022.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Human papillomaviruse type 16 (HPV16) is a high-risk serotype. As the main protective antigen protein, L1 protein is also the target protein for diagnosis. A simple label free electrochemical immunosensor (ECIS) was fabricated for ultrasensitive detection of HPV16 L1 protein in this work. Quasi-spherical Ag@Au core-shell nanoparticles on graphene oxide (Ag@AuNPs-GO) was developed as current response amplifier and characterized by UV-Vis Spectroscopy, Transmission Electron Microscopy and energy dispersive X-ray spectroscopy. Staphylococcal protein A was decorated on the modified electrode and utilized to immobilized the Fc portion of the monoclonal antibody specific for HPV16 L1 protein. Cyclic Voltammetry, Differential Pulse Voltammetry and Electrochemical Impedance Spectroscopy were used to verify the electrochemical performance and interfacial kinetic property. The increased concentration of HPV16 L1 protein led to slow electron transport and linearly decreased differential pulse voltammetry peak current with a detection limit of 0.002 ng mL-1 and a wide linear relationship in the range of 0.005-400 ng mL-1at a regression coefficient (R2) of 0.9948. Furthermore, this ECIS demonstrated acceptable accuracy with good reproducibility, stability and selectivity, suggesting a promising immunological strategy for HPV typing and early screening.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yiting Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Ying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Enping Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China; School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Thangaswamy SJK, Mir MA, Muthu A. Green synthesis of mono and bimetallic alloy nanoparticles of gold and silver using aqueous extract of Chlorella acidophile for potential applications in sensors. Prep Biochem Biotechnol 2021; 51:1026-1035. [PMID: 33687315 DOI: 10.1080/10826068.2021.1894441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bimetallic or alloy nanoparticles (NPs) have improved properties compared to their monometallic forms. Microalgae being rich in biocompatible reductants and being ecofriendly are potential sources to synthesize fuctionalized NPs. In this study, biosynthesis of silver, gold, and bimetallic NPs was carried out via bioreduction using aqueous extract of algal isolate Chlorella acidophile, inhabitant of non-arable land. C. acidophile is known to contain highly bioactive functional moieties, which can serve as nanobiofactories for metallic NPs. Various characterization techniques viz, UV-visible spectrophotometer, X-ray diffraction analysis, X-ray photo-electron spectroscopy, and Raman spectroscopy were employed to determine their composition, structure, and crystal phase. The monometallic and bimetallic particles were found to be crystalline state and generally in a spherical shape. Their size ranged from 5 to 45 nm and the corresponding FTIR spectra indicated that the specific organic functional groups from algal extract were involved in the bio-reduction. Furthermore, the core-shell in the case of Au-Ag NPs was formed due to the simultaneous reduction of gold and silver ions. An enhanced and more pronounced Raman spectra of Au-Ag NP compared to individual Au NP indicated the improved properties of bimetallic NPs, the latter having been of immense potential to be used as sensors in industries.
Collapse
Affiliation(s)
- Sujin Jeba Kumar Thangaswamy
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Mushtaq A Mir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Arumugam Muthu
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| |
Collapse
|
4
|
Hoseini Chopani SM, Asadi S, Heravi MM. Application of Bimetallic and Trimetallic Nanoparticles Supported on Graphene as novel Heterogeneous Catalysts in the Reduction of Nitroarenes, Homo-coupling, Suzuki-Miyaura and Sonogashira Reactions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200914111559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the last decade, the use of heterogeneous catalysts based on Metal Nanoparticles
(MNPs) has attracted increasing attention due to their prominence as nanocatalysts in
several key chemical transformations. Notably, it is well identified that supporting Metal
Nanoparticles (MNPs) with suitable solid surfaces can protect the MNPs from leaching,
deactivation, and also increasing its ease of separation and possible reusability. Graphene
oxide (GO) as a conductive surface could have non-covalent bonding interactions like hydrogen
bonding, electrostatic and π –π* stacking interactions with substrate leading to
activation of the substrate. Remarkably, it is recognized that bimetallic nanoparticles supported
on graphene oxide often show novel properties that are not present on either of the
parent metal or surfaces. In this review, we tried to reveal the potential advantages of
bimetallic and trimetallic nanoparticles supported on graphene oxide in organic transformations, including the
reduction of nitroarenes, Suzuki-Miyaura and Sonogashira coupling reactions.
Collapse
Affiliation(s)
| | - Shima Asadi
- Faculty of Chemistry and Physics, Department of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Majid M. Heravi
- Faculty of Chemistry and Physics, Department of Chemistry, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
5
|
Synthesis, Structure, and Anticancer Activity of Symmetrical and Non-symmetrical Silver(I)-N-Heterocyclic Carbene Complexes. Appl Biochem Biotechnol 2020; 191:1171-1189. [PMID: 32002729 DOI: 10.1007/s12010-019-03186-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
Synthesis and anticancer studies of three symmetrically and non-symmetrically substituted silver(I)-N-Heterocyclic carbene complexes of type [(NHC)2-Ag]PF6 (7-9) and their respective (ligands) benzimidazolium salts (4-6) are described herein. Compound 5 and Ag-NHC-complex 7 were characterized by the single crystal X-ray diffraction technique. Structural studies for 7 showed that the silver(I) center has linear C-Ag-C coordination geometry (180.00(10)o). Other azolium and Ag-NHC analogues were confirmed by H1 and C13-NMR spectroscopy. The synthesized analogues were biologically characterized for in vitro anticancer activity against three cancer cell lines including human colorectal cancer (HCT 116), breast cancer (MCF-7), and erythromyeloblastoid leukemia (K-562) cell lines and in terms of in vivo acute oral toxicity (IAOT) in view of agility and body weight of female rats. In vitro anticancer activity showed the values of IC50 in range 0.31-17.9 μM in case of K-562 and HCT-116 cancer cell lines and 15.1-35.2 μM in case of MCF-7 while taking commercially known anticancer agents 5-fluorouracil, tamoxifen, and betulinic acid which have IC50 values 5.2, 5.5, and 17.0 μM, respectively. In vivo study revealed vigor and agility of all test animals which explores the biocompatibility and non-toxicity of the test analogues.
Collapse
|
6
|
Çıplak Z, Getiren B, Gökalp C, Yıldız A, Yıldız N. Green synthesis of reduced graphene oxide-AgAu bimetallic nanocomposite: Catalytic performance. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1613227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zafer Çıplak
- Department of Chemical Engineering, Ankara University, Ankara, Turkey
| | - Bengü Getiren
- Department of Chemical Engineering, Ankara University, Ankara, Turkey
| | - Ceren Gökalp
- Department of Chemical Engineering, Ankara University, Ankara, Turkey
| | - Atila Yıldız
- Department of Biology, Ankara University, Ankara, Turkey
| | - Nuray Yıldız
- Department of Chemical Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Zhao L, Song J, Xue Y, Zhao X, Deng Y, Li Q, Xia Y. Green Synthesis of Ag–Au Bimetallic Nanoparticles with Alginate for Sensitive Detection of H2O2. Catal Letters 2018. [DOI: 10.1007/s10562-018-2522-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Green Preparation of Ag-Au Bimetallic Nanoparticles Supported on Graphene with Alginate for Non-Enzymatic Hydrogen Peroxide Detection. NANOMATERIALS 2018; 8:nano8070507. [PMID: 29986528 PMCID: PMC6071074 DOI: 10.3390/nano8070507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 11/22/2022]
Abstract
In this work, a facile, environmentally friendly method was demonstrated for the synthesis of Ag-Au bimetallic nanoparticles (Ag-AuNPs) supported on reduced graphene oxide (RGO) with alginate as reductant and stabilizer. The prepared Ag-AuNPs/RGO was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results indicated that uniform, spherical Ag-AuNPs was evenly dispersed on graphene surface and the average particle size is about 15 nm. Further, a non-enzymatic sensor was subsequently constructed through the modified electrode with the synthesized Ag-AuNPs/RGO. The sensor showed excellent performance toward H2O2 with a sensitivity of 112.05 μA·cm−2·mM−1, a linear range of 0.1–10 mM, and a low detection limit of 0.57 μM (S/N = 3). Additionally, the sensor displayed high sensitivity, selectivity, and stability for the detection of H2O2. The results demonstrated that Ag-AuNPs/RGO has potential applications as sensing material for quantitative determination of H2O2.
Collapse
|
9
|
Wang C, Hu L, Zhao K, Deng A, Li J. Multiple signal amplification electrochemiluminescent immunoassay for Sudan I using gold nanorods functionalized graphene oxide and palladium/aurum core-shell nanocrystallines as labels. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Zhang S, Yuan H, Zhao B, Zhang L, Zhang Y. Integrated platform with combination of on-line protein digestion, isotope dimethyl labeling and multidimensional peptide separation for high-throughput proteome quantification. Anal Chim Acta 2018; 1000:172-179. [DOI: 10.1016/j.aca.2017.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 02/08/2023]
|
11
|
Wang H, Jia S, Wang H, Li B, Liu W, Li N, Qiao J, Li CZ. A novel-green adsorbent based on betaine-modified magnetic nanoparticles for removal of methyl blue. Sci Bull (Beijing) 2017; 62:319-325. [PMID: 36659415 DOI: 10.1016/j.scib.2017.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 01/21/2023]
Abstract
A potential adsorbent based on betaine-modified magnetic iron oxide nanoparticles (BMNPs) was successfully synthesized by facile method, characterized and applied for methyl blue (MB) removal from aqueous solution. The characterization results of FTIR, transmission electron microscopy (TEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) showed that the prepared nanoparticles could be well dispersed in water and exhibited excellent superparamagnetism. These properties imply the potential to recycle BMNPs from wastewater through magnetic field. In the adsorption process, the effects of main experimental parameters such as pH of MB solution, initial concentration of MB, contact time, and adsorption capacity for MB were studied and optimized. These results demonstrated that large amounts of quaternary ammonium groups existing on the surface of BMNPs could promote absorption of MB via electrostatic forces. Additionally, the adsorption kinetics of MB was found to follow a pseudo-second-order kinetic model and the adsorption equilibrium data fitted very closely to the Langmuir adsorption isotherm model. The maximum adsorption capacity for MB was calculated to be 136mgg-1 at room temperature. Moreover, the BMNPs showed good reusability with 73.33% MB adsorption in the 5th cycle.
Collapse
Affiliation(s)
- Haowei Wang
- College of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Shangning Jia
- College of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Haojiang Wang
- College of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Bo Li
- College of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Wen Liu
- College of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Ningbo Li
- College of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Jie Qiao
- College of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Chen-Zhong Li
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA.
| |
Collapse
|