1
|
Koury J, Singh H, Sutley-Koury SN, Fok D, Qiu X, Maung R, Gelman BB, Ethell IM, Kaul M. EphB2-mediated ephrin-B reverse signaling on microglia drives an anti-viral, but inflammatory and neurotoxic response associated with HIV. RESEARCH SQUARE 2025:rs.3.rs-5523243. [PMID: 40235485 PMCID: PMC11998759 DOI: 10.21203/rs.3.rs-5523243/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background: Pathological inflammation with a loss of synaptic integrity and function has been implicated in HIV Associated Neurocognitive Disorders (HAND). Although therapeutics exist to increase the lifespan of people living with HIV (PLWH), they are not effective at preventing neuroinflammation and HIV induced neuronal damage persists. In this study, we investigate the ephrin-B/EphB axis, which regulates inflammation, in post-mortem brain specimen of PLWH and experimental models in order to assess its potential role in HIV induced neuroinflammation. Methods: We analyze mRNA samples of post-mortem brain specimen of PLWH and uninfected controls obtained from the National NeuroAIDS Tissue Consortium (NNTC) and, for comparison, of a transgenic mouse model of neuroHIV using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Follow-up experiments employ mouse brain tissue and in vitro models, including immortalized human microglia, human induced pluripotent stem cell (iPSC)-derived mixed neuroglial cell cultures, cellular and molecular interference, functional and multiplex assays, immunofluorescence and mRNA sequencing to examine the role of the ephrin-B/EphB axis in neuroinflammation and the associated neurotoxicity. Results: Using qRT-PCR we find increased expression of EphB2 in post-mortem brain of PLWH, and detect a correlation with pro-viral DNA, viral RNA and an inverse correlation with abstract executive function and verbal fluency. Increased expression of ephrin-B/EphB at mRNA and protein level is also observed in brains of a transgenic mouse model of neuroHIV suggesting the upregulation can be driven, at least in part, by expression of viral gp120 envelope protein and a type I interferon, IFNβ. Additionally, we find induction of ephrin-B1 expression in microglia following activation by IFNβ. Given the previously reported impact of EphB2 on inflammation in the periphery, the functional role of EphB2-mediated ephrin-B reverse signaling on microglia is assessed for a pro-inflammatory and anti-viral signature. We find that EphB2 treated microglia secrete inflammatory and anti-viral factors but also exert contact-independent neurotoxicity. Finally, knockdown of microglial ephrin-B1, an EphB2 binding partner, shows a partial alleviation of the microglial pro-inflammatory signature and neurotoxicity. Conclusion: Our study suggests that elevated EphB2, and its reverse signaling through ephrin-B1 in microglia contribute to neuroinflammation and neurotoxicity in neuroHIV.
Collapse
|
2
|
McLane VD, Lark ARS, Nass SR, Knapp PE, Hauser KF. HIV-1 Tat reduces apical dendritic spine density throughout the trisynaptic pathway in the hippocampus of male transgenic mice. Neurosci Lett 2022; 782:136688. [PMID: 35595189 DOI: 10.1016/j.neulet.2022.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Nearly one-third of persons infected with HIV-1 (PWH) develop HIV-associated neurocognitive disorders (HAND), which can be exacerbated by exposure to opioids. The impact of opioids on HIV-induced alterations in neuronal plasticity is less well understood. Both morphine exposure and HIV have been shown to disrupt synaptic growth and stability in the hippocampus suggesting a potential site of convergence for their deleterious effects. In the present study, we examined the density of dendritic spines in CA1 and CA3 pyramidal neurons, and granule neurons within the dentate gyrus representing the hippocampal trisynaptic pathway after short-term exposure to the HIV transactivator of transcription (Tat) protein and morphine. We exposed inducible male, HIV-1 Tat transgenic mice to escalating doses of morphine (10-40 mg/kg, b.i.d.) and examined synaptodendritic structure in Golgi-impregnated hippocampal neurons. HIV-1 Tat, but not morphine, systematically reduced the density of apical, but not basilar, dendrites of CA1 and CA3 pyramidal neurons, and granule neuronal apical dendrites, suggesting the coordinated loss of specific synaptic interconnections throughout the hippocampal trisynaptic pathway.
Collapse
Affiliation(s)
- Virginia D McLane
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Arianna R S Lark
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Sara R Nass
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Marks WD, Paris JJ, Barbour AJ, Moon J, Carpenter VJ, McLane VD, Lark ARS, Nass SR, Zhang J, Yarotskyy V, McQuiston AR, Knapp PE, Hauser KF. HIV-1 Tat and Morphine Differentially Disrupt Pyramidal Cell Structure and Function and Spatial Learning in Hippocampal Area CA1: Continuous versus Interrupted Morphine Exposure. eNeuro 2021; 8:ENEURO.0547-20.2021. [PMID: 33782102 PMCID: PMC8146490 DOI: 10.1523/eneuro.0547-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
About half the people infected with human immunodeficiency virus (HIV) have neurocognitive deficits that often include memory impairment and hippocampal deficits, which can be exacerbated by opioid abuse. To explore the effects of opioids and HIV on hippocampal CA1 pyramidal neuron structure and function, we induced HIV-1 transactivator of transcription (Tat) expression in transgenic mice for 14 d and co-administered time-release morphine or vehicle subcutaneous implants during the final 5 d (days 9-14) to establish steady-state morphine levels. Morphine was withheld from some ex vivo slices during recordings to begin to assess the initial pharmacokinetic consequences of opioid withdrawal. Tat expression reduced hippocampal CA1 pyramidal neuronal excitability at lower stimulating currents. Pyramidal cell firing rates were unaffected by continuous morphine exposure. Behaviorally, exposure to Tat or high dosages of morphine impaired spatial memory Exposure to Tat and steady-state levels of morphine appeared to have largely independent effects on pyramidal neuron structure and function, a response that is distinct from other vulnerable brain regions such as the striatum. By contrast, acutely withholding morphine (from morphine-tolerant ex vivo slices) revealed unique and selective neuroadaptive shifts in CA1 pyramidal neuronal excitability and dendritic plasticity, including some interactions with Tat. Collectively, the results show that opioid-HIV interactions in hippocampal area CA1 are more nuanced than previously assumed, and appear to vary depending on the outcome assessed and on the pharmacokinetics of morphine exposure.
Collapse
Affiliation(s)
- William D Marks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Jason J Paris
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848
| | - Aaron J Barbour
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Jean Moon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Valerie J Carpenter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Arianna R S Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Sara R Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Jingli Zhang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0709
| |
Collapse
|
4
|
Malik VA, Di Benedetto B. The Blood-Brain Barrier and the EphR/Ephrin System: Perspectives on a Link Between Neurovascular and Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:127. [PMID: 29706868 PMCID: PMC5906525 DOI: 10.3389/fnmol.2018.00127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
Interactions among endothelial cells (EC) forming blood vessels and their surrounding cell types are essential to establish the blood-brain barrier (BBB), an integral part of the neurovascular unit (NVU). Research on the NVU has recently seen a renaissance to especially understand the neurobiology of vascular and brain pathologies and their frequently occurring comorbidities. Diverse signaling molecules activated in the near proximity of blood vessels trigger paracellular pathways which regulate the formation and stabilization of tight junctions (TJ) between EC and thereby influence BBB permeability. Among regulatory molecules, the erythropoietin-producing-hepatocellular carcinoma receptors (EphR) and their Eph receptor-interacting signals (ephrins) play a pivotal role in EC differentiation, angiogenesis and BBB integrity. Multiple EphR-ligand interactions between EC and other cell types influence different aspects of angiogenesis and BBB formation. Such interactions additionally control BBB sealing properties and thus the penetration of substances into the brain parenchyma. Thus, they play critical roles in the healthy brain and during the pathogenesis of brain disorders. In this mini-review article, we aim at integrating the constantly growing literature about the functional roles of the EphR/ephrin system for the development of the vascular system and the BBB and in the pathogenesis of neurovascular and neuropsychiatric disorders. We suggest the hypothesis that a disrupted EphR/ephrin signaling at the BBB might represent an underappreciated molecular hub of disease comorbidity. Finally, we propose the possibility that the EphR/ephrin system bears the potential of becoming a novel target for the development of alternative therapeutic treatments, focusing on such comorbidities.
Collapse
Affiliation(s)
- Victoria A Malik
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Abstract
A defining feature of HIV-associated neurocognitive disorder (HAND) is the loss of excitatory synaptic connections. Synaptic changes that occur during exposure to HIV appear to result, in part, from a homeostatic scaling response. Here we discuss the mechanisms of these changes from the perspective that they might be part of a coping mechanism that reduces synapses to prevent excitotoxicity. In transgenic animals expressing the HIV proteins Tat or gp120, the loss of synaptic markers precedes changes in neuronal number. In vitro studies have shown that HIV-induced synapse loss and cell death are mediated by distinct mechanisms. Both in vitro and animal studies suggest that HIV-induced synaptic scaling engages new mechanisms that suppress network connectivity and that these processes might be amenable to therapeutic intervention. Indeed, pharmacological reversal of synapse loss induced by HIV Tat restores cognitive function. In summary, studies indicate that there are temporal, mechanistic and pharmacological features of HIV-induced synapse loss that are consistent with homeostatic plasticity. The increasingly well delineated signaling mechanisms that regulate synaptic scaling may reveal pharmacological targets suitable for normalizing synaptic function in chronic neuroinflammatory states such as HAND.
Collapse
Affiliation(s)
- Matthew V Green
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Jonathan D Raybuck
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Mariah M Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Valenza M, Picetti R, Yuferov V, Butelman ER, Kreek MJ. Strain and cocaine-induced differential opioid gene expression may predispose Lewis but not Fischer rats to escalate cocaine self-administration. Neuropharmacology 2016; 105:639-650. [PMID: 26777278 DOI: 10.1016/j.neuropharm.2016.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/11/2015] [Accepted: 01/03/2016] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to investigate alterations in gene expression of opioid system components induced by extended access (18 h) cocaine self-administration and to determine the impact of genetic background in the vulnerability to escalate cocaine intake. Comparing two inbred rat strains, we previously reported that Lewis rats progressively escalated cocaine consumption compared to Fischer rats, in a new translational model of intravenous cocaine self-administration, which included 14 sessions of 18-h operant sessions in which rats were allowed to select the cocaine unit dose to self-administer. We compare here Fischer and Lewis rats in the gene expression of endogenous opioid peptides (Pomc, Penk, Pdyn) and cognate receptors (Oprm, Oprk and Oprd) in reward-related brain regions, after exposure to either cocaine self-administration or yoked-saline, in the aforementioned translational paradigm. We performed a correlation analysis between the mRNA level, found in the Dorsal Striatum (DS), Nucleus accumbens (NAcc) shell and core respectively, and individual cocaine intake. Our findings show that the gene expression of all the aforementioned opioid genes exhibit strain-dependent differences in the DS, in absence of cocaine exposure. Also, different strain-specific cocaine-induced mRNA expression of Oprm and Oprk was found in DS. Only few differences were found in the ventral parts of the striatum. Moreover, gene expression level of Pdyn, Penk, Oprk, and Oprm in the DS was significantly correlated with cocaine intake only in Fischer rats. Overall, these data shed light on potential genetic differences which may predispose of subjects to initiate and escalate cocaine consumption.
Collapse
Affiliation(s)
- Marta Valenza
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | - Roberto Picetti
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA; Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| |
Collapse
|
7
|
Pozniak PD, Darbinyan A, Khalili K. TNF-α/TNFR2 Regulatory Axis Stimulates EphB2-Mediated Neuroregeneration Via Activation of NF-κB. J Cell Physiol 2015; 231:1237-48. [PMID: 26492598 DOI: 10.1002/jcp.25219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
HIV-1 infected individuals are at high risk of developing HIV-associated neurocognitive disorders (HAND) as HIV infection leads to neuronal injury and synaptic loss in the central nervous system (CNS). The neurotoxic effects of HIV-1 are primarily a result of viral replication leading to the production of inflammatory chemokines and cytokines, including TNF-α. Given an important role of TNF-α in regulating synaptic plasticity, we investigated the effects of TNF-α on the development of neuronal processes after mechanical injury, and we showed that TNF-α treatment stimulates the regrowth of neuronal processes. To investigate transcriptional effects of TNF-α on synaptic plasticity, we analyzed both human neurosphere and isolated neuronal cultures for the regulation of genes central to synaptic alterations during learning and memory. TNF-α treatment upregulated Ephrin receptor B2 (EphB2), which is strongly involved in dendritic arborization and synaptic integrity. TNF-α strongly activates the NF-κB pathway, therefore, we propose that TNF-α-induced neurite regrowth occurs primarily through EphB2 signaling via stimulation of NF-κB. EphB2 promoter activity increased with TNF-α treatment and overexpression of NF-κB. Direct binding of NF-κB to the EphB2 promoter occurred in the ChIP assay, and site-directed mutagenesis identified binding sites involved in TNF-α-induced EphB2 activation. TNF-α induction of EphB2 was determined to occur specifically through TNF-α receptor 2 (TNFR2) activation in human primary fetal neurons. Our observations provide a new avenue for the investigation on the impact of TNF-α in the context of HIV-1 neuronal cell damage as well as providing a potential therapeutic target in TNFR2 activation of EphB2.
Collapse
Affiliation(s)
- Paul D Pozniak
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Armine Darbinyan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Division of Neuropathology, Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Wrasidlo W, Crews LA, Tsigelny IF, Stocking E, Kouznetsova VL, Price D, Paulino A, Gonzales T, Overk CR, Patrick C, Rockenstein E, Masliah E. Neuroprotective effects of the anti-cancer drug sunitinib in models of HIV neurotoxicity suggests potential for the treatment of neurodegenerative disorders. Br J Pharmacol 2015; 171:5757-73. [PMID: 25117211 DOI: 10.1111/bph.12875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/30/2014] [Accepted: 08/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Anti-retrovirals have improved and extended the life expectancy of patients with HIV. However, as this population ages, the prevalence of cognitive changes is increasing. Aberrant activation of kinases, such as receptor tyrosine kinases (RTKs) and cyclin-dependent kinase 5 (CDK5), play a role in the mechanisms of HIV neurotoxicity. Inhibitors of CDK5, such as roscovitine, have neuroprotective effects; however, CNS penetration is low. Interestingly, tyrosine kinase inhibitors (TKIs) display some CDK inhibitory activity and ability to cross the blood-brain barrier. EXPERIMENTAL APPROACH We screened a small group of known TKIs for a candidate with additional CDK5 inhibitory activity and tested the efficacy of the candidate in in vitro and in vivo models of HIV-gp120 neurotoxicity. KEY RESULTS Among 12 different compounds, sunitinib inhibited CDK5 with an IC50 of 4.2 μM. In silico analysis revealed that, similarly to roscovitine, sunitinib fitted 6 of 10 features of the CDK5 pharmacophore. In a cell-based model, sunitinib reduced CDK5 phosphorylation (pCDK5), calpain-dependent p35/p25 conversion and protected neuronal cells from the toxic effects of gp120. In glial fibrillary acidic protein-gp120 transgenic (tg) mice, sunitinib reduced levels of pCDK5, p35/p25 and phosphorylated tau protein, along with amelioration of the neurodegenerative pathology. CONCLUSIONS AND IMPLICATIONS Compounds such as sunitinib with dual kinase inhibitory activity could ameliorate the cognitive impairment associated with chronic HIV infection of the CNS. Moreover, repositioning existing low MW compounds holds promise for the treatment of patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Wolf Wrasidlo
- Department of Neurosciences, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The success of combination antiretroviral therapy (cART) in transforming the lives of HIV-infected individuals with access to these drugs is tempered by the increasing threat of HIV-associated neurocognitive disorders (HAND) to their overall health and quality of life. Intensive investigations over the past two decades have underscored the role of host immune responses, inflammation, and monocyte-derived macrophages in HAND, but the precise pathogenic mechanisms underlying HAND remain only partially delineated. Complicating research efforts and therapeutic drug development are the sheer complexity of HAND phenotypes, diagnostic imprecision, and the growing intersection of chronic immune activation with aging-related comorbidities. Yet, genetic studies still offer a powerful means of advancing individualized care for HIV-infected individuals at risk. There is an urgent need for 1) longitudinal studies using consistent phenotypic definitions of HAND in HIV-infected subpopulations at very high risk of being adversely impacted, such as children, 2) tissue studies that correlate neuropathological changes in multiple brain regions with genomic markers in affected individuals and with changes at the RNA, epigenomic, and/or protein levels, and 3) genetic association studies using more sensitive subphenotypes of HAND. The NIH Brain Initiative and Human Connectome Project, coupled with rapidly evolving systems biology and machine learning approaches for analyzing high-throughput genetic, transcriptomic and epigenetic data, hold promise for identifying actionable biological processes and gene networks that underlie HAND. This review summarizes the current state of understanding of host genetic factors predisposing to HAND in light of past challenges and suggests some priorities for future research to advance the understanding and clinical management of HAND in the cART era.
Collapse
Affiliation(s)
- Asha R Kallianpur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/Mail Code NE50, Cleveland, OH, 44195, USA,
| | | |
Collapse
|
10
|
Jiang WM, Zhang XY, Zhang YZ, Liu L, Lu HZ. A high throughput RNAi screen reveals determinants of HIV-1 activity in host kinases. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2229-2237. [PMID: 24966931 PMCID: PMC4069921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Drug resistance remains a great challenge in HIV/AIDS treatment despite the recent advances in novel therapeutics. It may be a good strategy to develop drugs targeting the essential host factors to decrease the risk of drug resistance. Previous studies suggested that so many host kinases play roles in HIV life cycles. More importantly, many kinase genes are drugable targets, therefore, it is vital to figure out host kinases responsible for HIV-1 infection and replication to provide novel therapeutic regimens and to deepen our understanding to HIV-host interaction. In present work, a high throughput RNAi screen with a shRNA library against 474 kinases was applied to HEK293T cells stably expressed a HIV-1 LTR (long terminal repeat)-driven reporter plasmid. Four genes, AK1, EphB2, PRKACB and CDK5R2, were found to specifically suppress the HIV-1 LTR activity following effective knockdown. Furthermore, overexpression of AK1 and PRKACB upregulated the HIV-1 LTR activity. Therefore, AK1 and PRKACB are in positive control of HIV-1 activity. DNA microarray analysis demonstrated that overlapped genes between AK1-silenced and PRKACB-silenced cells were mainly enriched in several amino acid biosynthesis pathways, TGF-β signaling and p53 signaling pathways. These alterations may repress the viral infection by the downregulation of ERK1/2, p38MAPK and NFκB signaling pathways. Collectively, our work uncovers several host kinases involving the HIV-1 infection and may provide potential therapeutic targets for AIDS treatment in future.
Collapse
Affiliation(s)
- Wei-Min Jiang
- Huashan Hospital Affiliated to Fudan UniversityShanghai, China
| | - Xin-Yun Zhang
- Huashan Hospital Affiliated to Fudan UniversityShanghai, China
| | - Yun-Zhi Zhang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan UniversityShanghai, China
| | - Li Liu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan UniversityShanghai, China
| | - Hong-Zhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan UniversityShanghai, China
| |
Collapse
|
11
|
Yuferov V, Butelman ER, Ho A, Morgello S, Kreek MJ. Neurocognitive and neuroinflammatory correlates of PDYN and OPRK1 mRNA expression in the anterior cingulate in postmortem brain of HIV-infected subjects. J Neuroinflammation 2014; 11:5. [PMID: 24405578 PMCID: PMC3896676 DOI: 10.1186/1742-2094-11-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/21/2013] [Indexed: 01/22/2023] Open
Abstract
Chronic inflammation may contribute to neuropsychological impairments in individuals with HIV, and modulation of this inflammatory response by opiate receptor ligands is important in light of the prevalence of drug use in HIV populations. Exogenous MOR and KOR agonists have differential effects on central nervous system (CNS) immunity and, while some data suggest KOR agonists are immunosuppressive, the KOR agonist dynorphin has been shown to stimulate human monocyte chemotaxis. In this study, we examined mRNA levels of endogenous opioid receptors OPRK1 and OPRM1, prodynorphin (PDYN), macrophage scavenger receptor CD163, and microglia/macrophage marker CD68 in the caudate and anterior cingulate of postmortem brains from HIV-positive and HIV-negative subjects. Brain tissues of HIV-infected (n = 24) and control subjects (n = 15) were obtained from the Manhattan HIV Brain Bank. Quantification of the gene mRNA was performed using SYBR Green RT-PCR. CD68 and CD163 were increased in HIV-positive (HIV+) compared to HIV-negative (HIV-) individuals in both brain regions. There were higher OPRK1 (P <0.005), and lower PDYN mRNA (P <0.005) levels in the anterior cingulate of HIV+ compared to HIV- subjects. This difference between the clinical groups was not found in the caudate. There was no difference in the levels of OPRM1 mRNA between HIV+ and HIV- subjects. Using linear regression analysis, we examined the relationship of OPRK1 and PDYN mRNA levels in the HIV+ subjects with seven cognitive domain T scores of a neuropsychological test battery. Within the HIV+ subjects, there was a positive correlation between anterior cingulate PDYN mRNA levels and better T-scores in the motor domain. Within the HIV+ subjects there were also positive correlations of both OPRK1 and PDYN mRNA levels with the anti-inflammatory marker CD163, but not with proinflammatory CD68 levels. In this setting, decreased PDYN mRNA may reflect a homeostatic mechanism to reduce monocyte migration, accompanied by compensatory increases in the cognate receptor (KOR) to dampen pro-inflammatory responses. It is possible that enhanced neuroprotection and better motor performance are associated with higher levels of dynorphin and the recruitment of neuroprotective CD163-positive macrophages. Further studies are needed to test this hypothesis.
Collapse
Affiliation(s)
- Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
12
|
Pozniak PD, White MK, Khalili K. TNF-α/NF-κB signaling in the CNS: possible connection to EPHB2. J Neuroimmune Pharmacol 2013; 9:133-41. [PMID: 24277482 DOI: 10.1007/s11481-013-9517-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/13/2013] [Indexed: 12/27/2022]
Abstract
Tumor necrosis factor-alpha, TNF-α, is a cytokine that is a well-known factor in multiple disease conditions and is recognized for its major role in central nervous system signaling. TNF-α signaling is most commonly associated with neurotoxicity, but in some conditions it has been found to be neuroprotective. TNF-α has long been known to induce nuclear factor-kappa B, NF-κB, signaling by, in most cases, translocating the p65 (RelA) DNA binding factor to the nucleus. p65 is a key member of NF-κB, which is well established as a family of transcription factors that regulates many signaling events, including growth and process development, in neuronal cell populations. NF-κB has been shown to affect both the receiving aspect of neuronal signaling events in dendritic development as well as the sending of neuronal signals in axonal development. In both cases, NK-κB functions as a promoter and/or inhibitor of growth, depending on the environmental conditions and signaling cascade. In addition, NF-κB is involved in memory formation or neurogenesis, depending on the region of the brain in which the signaling occurs. The ephrin (Eph) receptor family represents a subfamily of receptor tyrosine kinases, RTKs, which received much attention due to its potential involvement in neuronal cell health and function. There are two subsets of ephrin receptors, Eph A and Eph B, each with distinct functions in cardiovascular and skeletal development and axon guidance and synaptic plasticity. The presence of multiple binding sites for NF-κB within the regulatory region of EphB2 gene and its potential regulation by NF-κB pathway suggests that TNF-α may modulate EphB2 via NF-κB and that this may contribute to the neuroprotective activity of TNF-α.
Collapse
Affiliation(s)
- Paul D Pozniak
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, Room 741 MERB, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
13
|
Lawhorn C, Yuferov V, Randesi M, Ho A, Morgello S, Kreek MJ, Levran O. Genetic diversity and linkage disequilibrium in the chemokine receptor CCR2-CCR5 region among individuals and populations. Cytokine 2013; 64:571-6. [PMID: 24011637 DOI: 10.1016/j.cyto.2013.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/16/2013] [Accepted: 08/12/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chemokine receptors CCR2 and CCR5 play a key role in immune and inflammatory responses and have been associated with several diseases, including AIDS. In order to comprehend health disparities it is important to understand the nature of genetic variation in specific genes of interest in different populations. Current studies of the CCR2 and CCR5 receptor genes are primarily focused on the CCR5-Δ32, and CCR2-V64I SNPs. METHODS Sanger sequencing was used to sequence the regions containing 16 SNPs in the adjacent CCR2 and CCR5 genes (including CCR5-Δ32, and CCR2-V64I) in 249 subjects of African, European and Hispanic ancestry. Linkage disequilibrium (LD) and haplotypes were determined using Haploview. RESULTS The data revealed large differences in allele frequencies of several SNPs and LD patterns among the ethnic groups, including SNPs that were restricted to Africans or Europeans. Seven known CCR5 haplotypes and six novel CCR2 haplotypes were identified. A rare case of an HIV+ subject with the CCR5-Δ32/Δ32 was identified. CONCLUSIONS These data demonstrate a LD between CCR2 and CCR5 at several loci and provide new information about CCR2 that contributes to our understanding of its population-specific genetic variability. The data indicate that in addition to CCR5-Δ32 and CCR2-V64I, other SNPs and haplotypes may be important genetic determinants of disease and should be investigated.
Collapse
Affiliation(s)
- Collene Lawhorn
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Spitsin S, Stevens KE, Douglas SD. Expression of substance P, neurokinin-1 receptor and immune markers in the brains of individuals with HIV-associated neuropathology. J Neurol Sci 2013; 334:18-23. [PMID: 23916293 DOI: 10.1016/j.jns.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
The tachykinin neuropeptide substance P (SP) has an important signaling role in both the nervous and the immune systems. Two naturally occurring variants of the neurokinin-1 receptor (NK1R) mediate the effects of SP, full-length receptor (NK1R-F) and a truncated form (NK1R-T) that lacks 96 amino acid residues at the C-terminus. We previously reported decreased expression of the NK1R-F in the CNS of HIV-positive individuals in comparison to HIV-negative control subjects. There were no differences in the expression of the NK1R-T in the same groups. In the current study, we quantified the expressions of SP precursor mRNA preprotachykinin (TAC1), NK1R (full and truncated forms), viral load (HIV-gag) and several proinflammatory and immune markers (CD4, CCR5, CXCR4, fractalkine, IL-6, IL-10, CCL2, CCL20 and CD163) in the frontal cortex of autopsied brains from HIV-1-positive individuals with or without HIV-associated neuropathology. The expressions of SP and, to lesser extent, NK1R-F were decreased while the expressions of CXCR4, CCR5 and CCL2 were increased in CNS of individuals with HIV-associated neuropathology. There was no change in HIV loads associated with neuropathology; however, we found a positive correlation between viral loads and the expression of haptoglobin-hemoglobin scavenger receptor CD163. An analysis of CSF from corresponding samples demonstrated an increase in proinflammatory markers (CCL2 MIP-1α and MIP-1β) associated with neuropathology. Although our data confirm the overall inflammatory nature of HIV-associated neuropathology, we observed a decrease in the expression of SP and NK1R-F, which is also associated with other forms of neuroinflammation.
Collapse
Affiliation(s)
- Sergei Spitsin
- Division of Allergy and Immunology, Research Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | |
Collapse
|