1
|
Different changes in pre- and postsynaptic components in the hippocampal CA1 subfield after transient global cerebral ischemia. Brain Struct Funct 2021; 227:345-360. [PMID: 34626230 DOI: 10.1007/s00429-021-02404-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
To date, ischemia-induced damage to dendritic spines has attracted considerable attention, while the possible effects of ischemia on presynaptic components has received relatively less attention. To further examine ischemia-induced changes in pre- and postsynaptic specializations in the hippocampal CA1 subfield, we modeled global cerebral ischemia with two-stage 4-vessel-occlusion in rats, and found that three postsynaptic markers, microtubule-associated protein 2 (MAP2), postsynaptic density protein 95 (PSD95), and filamentous F-actin (F-actin), were all substantially decreased in the CA1 subfield after ischemia/reperfusion (I/R). Although no significant change was detected in synapsin I, a presynaptic marker, in the CA1 subfield at the protein level, confocal microscopy revealed that the number and size of synapsin I puncta were significantly changed in the CA1 stratum radiatum after I/R. The size of synapsin I puncta became slightly, but significantly reduced on Day 1.5 after I/R. From Days 2 to 7 after I/R, the number of synapsin I puncta became moderately decreased, while the size of synapsin I puncta was significantly increased. Interestingly, some enlarged puncta of synapsin I were observed in close proximity to the dendritic shafts of CA1 pyramidal cells. Due to the more substantial decrease in the number of F-actin puncta, the ratio of synapsin I/F-actin puncta was significantly increased after I/R. The decrease in synapsin I puncta size in the early stage of I/R may be the result of excessive neurotransmitter release due to I/R-induced hyperexcitability in CA3 pyramidal cells, while the increase in synapsin I puncta in the later stage of I/R may reflect a disability of synaptic vesicle release due to the loss of postsynaptic contacts.
Collapse
|
2
|
Bie N, Feng X, Li C, Meng M, Wang C. The Protective Effect of Docosahexaenoic Acid on PC12 Cells in Oxidative Stress Induced by H 2O 2 through the TrkB-Erk1/2-CREB Pathway. ACS Chem Neurosci 2021; 12:3433-3444. [PMID: 34428890 DOI: 10.1021/acschemneuro.1c00421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Docosahexaenoic acid (DHA) has attracted plenty of interest in the prevention of neurodegenerative diseases. Although the beneficial effects of DHA on the central nervous system function are recognized, more information on the molecular mechanisms involved in its neuroprotective effects is required. The present study aimed to evaluate the effects of DHA on the function of mitochondria, neurite growth-related proteins signaling pathway, and neural signal transmission. In this study, PC12 cells were treated with H2O2 (400 μM) to establish an oxidative damage model. Results showed that DHA improved the viability and morphology of PC12 cells. DHA significantly increased the antioxidant capacity, mitochondrial membrane potential, and activity of ATPase in the cells. Furthermore, the phosphorylation levels of tyrosine kinase receptor (BTrkB), phospholipase C-γ1 (PLCγ1), calcium/calmodulin-dependent protein kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), and cAMP-response element-binding protein (CREB) were upregulated by DHA. The damage on F-actin induced by H2O2 was reversed by DHA, indicating that DHA could protect neurite outgrowth. In addition, DHA increased the content of acetylcholine and γ-aminobutyric acid while decreasing glutamic acid. These results revealed that DHA could protect PC12 cells from damage induced by H2O2 through the TrkB-ERK1/2-CREB pathway.
Collapse
Affiliation(s)
- Nana Bie
- “State Key Laboratory of Food Nutrition and Safety”, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People’s Republic of China
| | - Xiaojuan Feng
- “State Key Laboratory of Food Nutrition and Safety”, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People’s Republic of China
| | - Chenjing Li
- “State Key Laboratory of Food Nutrition and Safety”, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People’s Republic of China
| | - Meng Meng
- “State Key Laboratory of Food Nutrition and Safety”, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People’s Republic of China
| | - Chunling Wang
- “State Key Laboratory of Food Nutrition and Safety”, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People’s Republic of China
| |
Collapse
|
3
|
Zirak MR, Rahimian R, Mousavizadeh K, Dehpour AR. Mechanisms underlie the proconvulsant effects of sildenafil. Biomed Pharmacother 2020; 134:111142. [PMID: 33360157 DOI: 10.1016/j.biopha.2020.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Kazem Mousavizadeh
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Rahimian R, Khoshneviszadeh M, Bahremand T, Zirak MR, Dehpour AR, Mousavizadeh K. Oxytocinergic system mediates the proconvulsant effects of sildenafil: The role of calcineurin. Horm Behav 2020; 122:104753. [PMID: 32302594 DOI: 10.1016/j.yhbeh.2020.104753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/10/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Sildenafil is a phosphodiesterase type 5 inhibitor used to treat male erectile dysfunction and pulmonary hypertension. A potential side effect of sildenafil is a noticeable decrease in seizure threshold. Oxytocin (OXT) secretion and the subsequent cAMP-responsive element-binding (CREB) phosphorylation are involved in proconvulsant effects of sildenafil in experimental models. The aim of the present study was to investigate the potential role of OXT receptors and their downstream calcineurin (CN)/inducible nitric oxide synthase (iNOS) pathways in proconvulsant effects of sildenafil. The pentylenetetrazole (PTZ)-induced seizure was used as a standard convulsion model in this study. Cortical CN activity, hippocampal nitrite levels, and proinflammatory cytokine content were measured. Our results indicated that following PTZ administration, sildenafil significantly increased CN activity at 40 mg/kg, respectively, in the control group. The combination of sildenafil and OXT receptor antagonist, atosiban (10 μg/kg, i.c.v) 30 min before sildenafil administration significantly reduced the CN activity. Also, the subeffective dose of CN inhibitor cyclosporine (5 mg/kg) 30 min before the administration of effective dose of sildenafil (40 mg/kg) reversed proconvulsant actions of sildenafil. This effect was iNOS-dependent because pretreatment of a low dose of aminoguanidine (20 mg/kg) 15 min before the administration of a low dose of cyclosporine (1 mg/kg) reversed the proconvulsant action of sildenafil (40 mg/kg). Finally, sildenafil induced the elevation of tumor necrosis factor alpha (TNF-α) and the nitrite level was blocked by the administration of cyclosporine in PTZ-treated mice. Collectively, our data provide insights into the role of OXT receptor/CN/iNOS pathway in the proconvulsant aspect of sildenafil.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Mahsima Khoshneviszadeh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kazem Mousavizadeh
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Guo CY, Xiong TQ, Tan BH, Gui Y, Ye N, Li SL, Li YC. The temporal and spatial changes of actin cytoskeleton in the hippocampal CA1 neurons following transient global ischemia. Brain Res 2019; 1720:146297. [PMID: 31233713 DOI: 10.1016/j.brainres.2019.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/13/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
Abstract
Transient global ischemia usually results in delayed neuronal death in selective brain regions, prior to which a rapid loss of dendritic spines has been widely reported in these regions. Dendritic spines are characterized by a highly branched meshwork of actin cytoskeleton (F-actin), which is extremely vulnerable to the ATP-depleted conditions such as hypoxia/ischemia. However, the ischemia-induced changes of F-actin are still not clarified in the vulnerable brain areas. This study was designed to examine the temporal and spatial alterations of F-actin in the CA1 subfield of rat hippocampus following reperfusion after global cerebral ischemia. Phalloidin staining and confocal microscopic examination showed that F-actin disappeared from the dentritic spines in the CA1 stratum radiatum, but aggregated into thread- or fiber-like structures on days 1.5-2 after ischemia. This was followed by a nearly complete loss of F-actin in the CA1 subfield on days 3-7 after ischemia. Colocalization analysis demonstrated that the F-actin threads or fibers were located mainly within the dentritic trunks. As revealed by Nissl and Fluoro-Jade B staining, the decrease of F-actin proceeded concurrently with the evolution of ischemic damage. Consistently, western blots detected a significant decrease of F-/G-actin ratio in the dissected CA1 subfield after ischemia. To our knowledge, this is the first report on the change of F-actin in the ischemic brain. Although the underlying mechanisms remain to be elucidated, our findings may provide an important structural clue for the neuronal dysfunction induced by ischemia.
Collapse
Affiliation(s)
- Chun-Yan Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Tian-Qing Xiong
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yue Gui
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Ning Ye
- Department of Geriatrics and General Medicine, The Second Hospital of Jilin University, Changchun, Jilin, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China.
| |
Collapse
|
6
|
Dexamethasone ameliorates the damage of hippocampal filamentous actin cytoskeleton but is not sufficient to cease epileptogenesis in pilocarpine induced epileptic mice. Epilepsy Res 2019; 154:26-33. [PMID: 31022637 DOI: 10.1016/j.eplepsyres.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/02/2019] [Accepted: 04/17/2019] [Indexed: 01/28/2023]
Abstract
Rogressive deconstruction of filament actin (F-actin) in hippocampal neurons in the epileptic brain have been associated with epileptogenesis. Previous clinical studies suggest that glucocorticoids treatment plays beneficial roles in refractory epilepsy. Glucocorticoids treatment affects dendritic spine morphology by regulating local glucocorticoid receptors and F-actin cytoskeleton dynamics. However, how glucocorticoids regulate epileptogenesis by controlling F-actin cytoskeleton is not clear yet. Here we study the function of glucocorticoids in epileptogenesis by examining F-actin abundance, hippocampal neuron number, and synaptic markers in pilocarpine-induced epileptic mice in the presence or absence of dexamethasone (DEX) treatment. We found that spontaneous seizure duration was significantly reduced; F-actin damage in hippocampal subfields was remarkably attenuated; loss of pyramidal cells was dramatically decreased; more intact synaptic structures indicated by pre- and postsynaptic markers were preserved in multiple hippocampal regions after DEX treatment. However, the number of ZNT3 positive particles in the molecular layer in the hippocampus of pilocarpine epileptic mice was not altered after DEX treatment. Although not sufficient to cease epileptogenesis, our results suggest that dexamethasone treatment ameliorates the damage of epileptic brain by stabilizing F-actin cytoskeleton in the pilocarpine epileptic mice.
Collapse
|
7
|
Rydzanicz M, Wachowska M, Cook EC, Lisowski P, Kuźniewska B, Szymańska K, Diecke S, Prigione A, Szczałuba K, Szybińska A, Koppolu A, Murcia Pienkowski V, Kosińska J, Wiweger M, Kostrzewa G, Brzozowska M, Domańska-Pakieła D, Jurkiewicz E, Stawiński P, Gromadka A, Zielenkiewicz P, Demkow U, Dziembowska M, Kuźnicki J, Creamer TP, Płoski R. Novel calcineurin A (PPP3CA) variant associated with epilepsy, constitutive enzyme activation and downregulation of protein expression. Eur J Hum Genet 2018; 27:61-69. [PMID: 30254215 DOI: 10.1038/s41431-018-0254-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/22/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
PPP3CA encodes calmodulin-binding catalytic subunit of calcineurin, a ubiquitously expressed calcium/calmodulin-regulated protein phosphatase. Recently de novo PPP3CA variants were reported as a cause of disease in 12 subjects presenting with epileptic encephalopathy and dysmorphic features. We describe a boy with similar phenotype and severe early onset epileptic encephalopathy in whom a novel de novo c.1324C>T (p.(Gln442Ter)) PPP3CA variant was found by whole exome sequencing. Western blot experiments in patient's cells (EBV transformed lymphocytes and neuronal cells derived through reprogramming) indicate that despite normal mRNA abundance the protein expression level is strongly reduced both for the mutated and wild-type protein. By in vitro studies with recombinant protein expressed in E. coli we show that c.1324C>T (p.(Gln442Ter)) results in constitutive activation of the enzyme. Our results confirm the role of PPP3CA defects in pathogenesis of a distinct neurodevelopmental disorder including severe epilepsy and dysmorphism and provide further functional clues regarding the pathogenic mechanism.
Collapse
Affiliation(s)
| | - Małgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Erik C Cook
- Center for Structural Biology and Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, USA
| | - Paweł Lisowski
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | | | - Krystyna Szymańska
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Alessandro Prigione
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Agnieszka Koppolu
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Wiweger
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Grażyna Kostrzewa
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Dorota Domańska-Pakieła
- Department of Child Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Jurkiewicz
- Department of Diagnostic Imaging, The Children's Memorial Health Institute, Warsaw, Poland
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Gromadka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | - Jacek Kuźnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Trevor P Creamer
- Center for Structural Biology and Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, USA
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Xiong TQ, Chen LM, Tan BH, Guo CY, Li YN, Zhang YF, Li SL, Zhao H, Li YC. The effects of calcineurin inhibitor FK506 on actin cytoskeleton, neuronal survival and glial reactions after pilocarpine-induced status epilepticus in mice. Epilepsy Res 2018; 140:138-147. [PMID: 29358156 DOI: 10.1016/j.eplepsyres.2018.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/05/2017] [Accepted: 01/03/2018] [Indexed: 01/03/2023]
Abstract
After status epilepticus (SE), actin cytoskeleton (F-actin) becomes progressively deconstructed in the hippocampus, which is consistent with the delayed pyramidal cell death in both time course and spatial distribution. A variety of experiments show that calcineurin inhibitors such as FK506 are able to inhibit the SE-induced actin depolymerization. However, it is still unclear what changes happen to the F-actin in the epileptic brain after FK506 treatment. A pilocarpine model of SE in mice was used to examine the effects of FK506 on the F-actin in the hippocampal neurons. The post SE (PSE) mice with or without FK506 treatment were monitored consecutively for 14 days to examine the frequency and duration of spontaneous seizures. The effects of FK506 on the activity of cofilin and actin dynamics were assessed at 7 and 14 d PSE by western blots. The organization of F-actin, neuronal cell death, and glial reactions were investigated by phalloidin staining, histological and immunocytochemical staining, respectively. As compared to the PSE + vehicle mice, FK506 treatment significantly decreased the frequency and duration of spontaneous seizures. Relative to the PSE + vehicle mice, western blots detected a partial restoration of phosphorylated cofilin and a significant increase of F/G ratio in the hippocampus after FK506 treatment. In the PSE + vehicle mice, almost no F-actin puncta were left in the CA1 and CA3 subfields at 7 and 14 d PSE. FK506-treated PSE mice showed a similar decrease of F-actin, but the extent of damage was significantly ameliorated. Consistently, the surviving neurons became significantly increased in number after FK506 treatment, relative to the PSE + vehicle groups. After FK506 treatment, microglial reaction was partially inhibited, but the expression of GFAP was not significantly changed, compared to the PSE + vehicle mice. The results suggest that post-epileptic treatment with FK506 ameliorated, but could not stop the deconstruction of F-actin or the delayed neuronal loss in the PSE mice.
Collapse
Affiliation(s)
- Tian-Qing Xiong
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Ling-Meng Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Chun-Yan Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Yong-Nan Li
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Yan-Feng Zhang
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Hui Zhao
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China.
| |
Collapse
|
9
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|