1
|
Gaikwad S, Kim MJ. Fish By-Product Collagen Extraction Using Different Methods and Their Application. Mar Drugs 2024; 22:60. [PMID: 38393031 PMCID: PMC10890078 DOI: 10.3390/md22020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The processing of fishery resources results in the production of a growing quantity of byproducts, including heads, skins, viscera, intestines, frames, and fillet cutoffs. These byproducts are either wasted or utilized for the production of low-value items and fish oil. Typically, fish processing industries use only 25%, while the remaining 75% is considered as waste by-products. This review presents a comprehensive review on the extraction of collagen from fish byproducts, highlighting numerous techniques including acid-soluble collagen (ASC), enzyme-soluble collagen (ESC), ultrasound extraction, deep eutectic solvent (DES) extraction, and supercritical fluid extraction (SFE). A detailed explanation of various extraction parameters such as time, temperature, solid to liquid (S/L) ratio, and solvent/pepsin concentration is provided, which needs to be considered to optimize the collagen yield. Moreover, this review extends its focus to a detailed investigation of fish collagen applications in the biomedical sector, food sector, and in cosmetics. The comprehensive review explaining the extraction methods, extraction parameters, and the diverse applications of fish collagen provides a basis for the complete understanding of the potential of fish-derived collagen. The review concludes with a discussion of the current research and a perspective on the future development in this research field.
Collapse
Affiliation(s)
- Sunita Gaikwad
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon 51140, Republic of Korea;
| | - Mi Jeong Kim
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon 51140, Republic of Korea;
- Department of Food and Nutrition, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
2
|
Salvatore L, Russo F, Natali ML, Rajabimashhadi Z, Bagheri S, Mele C, Lionetto F, Sannino A, Gallo N. On the effect of pepsin incubation on type I collagen from horse tendon: Fine tuning of its physico-chemical and rheological properties. Int J Biol Macromol 2024; 256:128489. [PMID: 38043667 DOI: 10.1016/j.ijbiomac.2023.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.
Collapse
Affiliation(s)
- Luca Salvatore
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy.
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | - Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Sonia Bagheri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Nunzia Gallo
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy; Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
3
|
Shaik MI, Md Nor IN, Sarbon NM. Effect of Extraction Time on the Extractability and Physicochemical Properties of Pepsin—Soluble Collagen (PCS) from the Skin of Silver Catfish (Pangasius sp.). Gels 2023; 9:gels9040300. [PMID: 37102912 PMCID: PMC10137522 DOI: 10.3390/gels9040300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The current study aimed to determine the effects of extraction time on the extractability and physicochemical properties of collagen from the skin of silver catfish (Pangasius sp.). Pepsin soluble collagen (PSC) was extracted for 24 and 48 h and analysed in terms of chemical composition, solubility, functional group, microstructure, and rheological properties. The yields of PSC at 24 h and 48 h extraction time were 23.64% and 26.43%, respectively. The chemical composition exhibited significant differences, with PSC extracted at 24 h showing better moisture, protein, fat, and ash content. Both collagen extractions indicated the highest solubility at pH 5. In addition, both collagen extractions exhibited Amide A, I, II, and III as fingerprint regions for collagen structure. The morphology of the extracted collagen appeared porous with a fibril structure. The dynamic viscoelastic measurements of complex viscosity (η*) and loss tangent (tan δ) decreased as temperature increased, and the viscosity increased exponentially as the frequency increased, whereas the loss tangent decreased. In conclusion, PSC extracted at 24 h showed similar extractability to that extracted at 48 h but with a better chemical composition and shorter extraction time. Therefore, 24 h is the best extraction time for PSC from silver catfish skin.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Intan Nordiana Md Nor
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| |
Collapse
|
4
|
Abstract
For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Wei Long Soon
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University, 639798 Singapore
| | - Raffaele Mezzenga
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Department
of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
CunhaNeves A, Harnedy-Rothwell PA, FitzGerald RJ. In vitro angiotensin-converting enzyme and dipeptidyl peptidase-IV inhibitory, and antioxidant activity of blue mussel (Mytilus edulis) byssus collagen hydrolysates. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractLarge quantities of mussel byssus are generated annually as a co-product of the mussel-processing industry. This fibrous material is a rich source of collagen, which when extracted has potential uses as an alternative source of collagen for food applications. However, due the complex structure of the material, the extraction of the collagenous components using food-friendly strategies has proved challenging to date. An enzyme-aided method, using a proline endoproteinase, was employed for the extraction of collagen from mussel byssus yielding 138.82 ± 2.25 mg collagen/g dry weight. Hydrolysates of the collagen extract were generated using five food-grade enzyme preparations with Corolase® PP giving the highest extent of hydrolysis. Reversed-phase and gel permeation high-performance liquid chromatography of the extracted collagen and its enzymatic hydrolysates showed significant hydrolysis of collagen. The hydrolysates generated with Corolase® PP showed the highest in vitro bioactivities: angiotensin-converting enzyme (ACE) IC50 = 0.79 ± 0.17 mg/ml, dipeptidyl peptidase-IV (DPP-IV) IC50 = 0.66 ± 0.17 mg/ml and oxygen radical absorbance capacity (ORAC) activity = 311.23 ± 13.41 µmol trolox equivalents (TE)/g. The results presented herein indicate that in addition to acting as an alternative source of collagen for food applications, mussel byssus collagen-derived hydrolysates have potential applications as functional food ingredients for the management of metabolic diseases such as type II diabetes and hypertension.
Collapse
|
6
|
Oliveira VDM, Assis CRD, Costa BDAM, Neri RCDA, Monte FTD, Freitas HMSDCV, França RCP, Santos JF, Bezerra RDS, Porto ALF. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers (Basel) 2020; 12:E2230. [PMID: 32998331 PMCID: PMC7601392 DOI: 10.3390/polym12102230] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized.
Collapse
Affiliation(s)
- Hafez Jafari
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Alberto Lista
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy;
| | - Manuela Mafosso Siekapen
- Department of Chemical Engineering and Industrial Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Brussels, Belgium;
| | - Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Amin Shavandi
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
8
|
Ju H, Liu X, Zhang G, Liu D, Yang Y. Comparison of the Structural Characteristics of Native Collagen Fibrils Derived from Bovine Tendons using Two Different Methods: Modified Acid-Solubilized and Pepsin-Aided Extraction. MATERIALS 2020; 13:ma13020358. [PMID: 31940943 PMCID: PMC7013963 DOI: 10.3390/ma13020358] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 01/15/2023]
Abstract
Native collagen fibrils (CF) were successfully extracted from bovine tendons using two different methods: modified acid-solubilized extraction for A-CF and pepsin-aided method for P-CF. The yields of A-CF and P-CF were up to 64.91% (±1.07% SD) and 56.78% (±1.22% SD) (dry weight basis), respectively. The analyses of both amino acid composition and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that A-CF and P-CF were type I collagen fibrils. Both A-CF and P-CF retained the intact crystallinity and integrity of type I collagen’s natural structure by FTIR spectra, circular dichroism spectroscopy (CD) and X-ray diffraction detection. The aggregation structures of A-CF and P-CF were displayed by UV–Vis. However, A-CF showed more intact aggregation structure than P-CF. Microstructure and D-periodicities of A-CF and P-CF were observed (SEM and TEM). The diameters of A-CF and P-CF are about 386 and 282 nm, respectively. Although both A-CF and P-CF were theoretically concordant with the Schmitt hypothesis, A-CF was of evener thickness and higher integrity in terms of aggregation structure than P-CF. Modified acid-solubilized method provides a potential non-enzyme alternative to extract native collagen fibrils with uniform thickness and integral aggregation structure.
Collapse
Affiliation(s)
- Haiyan Ju
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China; (H.J.); (X.L.); (G.Z.)
| | - Xiuying Liu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China; (H.J.); (X.L.); (G.Z.)
| | - Gang Zhang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China; (H.J.); (X.L.); (G.Z.)
| | - Dezheng Liu
- Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China
- Correspondence: (D.L.); (Y.Y.)
| | - Yongsheng Yang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China; (H.J.); (X.L.); (G.Z.)
- Correspondence: (D.L.); (Y.Y.)
| |
Collapse
|
9
|
Gaspar-Pintiliescu A, Stefan LM, Anton ED, Berger D, Matei C, Negreanu-Pirjol T, Moldovan L. Physicochemical and Biological Properties of Gelatin Extracted from Marine Snail Rapana venosa. Mar Drugs 2019; 17:md17100589. [PMID: 31627413 PMCID: PMC6835507 DOI: 10.3390/md17100589] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/21/2023] Open
Abstract
In this study, we aimed to obtain gelatin from the marine snail Rapana venosa using acidic and enzymatic extraction methods and to characterize these natural products for cosmetic and pharmaceutical applications. Marine gelatins presented protein values and hydroxyproline content similar to those of commercial mammalian gelatin, but with higher melting temperatures. Their electrophoretic profile and Fourier transform infrared (FTIR) spectra revealed protein and absorption bands situated in the amide region, specific for gelatin molecule. Scanning electron microscopy (SEM) analysis showed significant differences in the structure of the lyophilized samples, depending on the type of gelatin. In vitro studies performed on human keratinocytes showed no cytotoxic effect of acid-extracted gelatin at all tested concentrations and moderate cytotoxicity of enzymatic extracted gelatin at concentrations higher than 0.5 mg/mL. Also, both marine gelatins favored keratinocyte cell adhesion. No irritant potential was recorded as the level of IL-1α and IL-6 proinflammatory cytokines released by HaCaT cells cultivated in the presence of marine gelatins was significantly reduced. Together, these data suggest that marine snails are an alternative source of gelatins with potential use in pharmaceutical and skincare products.
Collapse
Affiliation(s)
- Alexandra Gaspar-Pintiliescu
- Departament of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania.
| | - Laura Mihaela Stefan
- Departament of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania.
| | - Elena Daniela Anton
- Departament of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania.
| | - Daniela Berger
- Faculty of Applied Chemistry and Material Science, University "Politehnica" of Bucharest, 1-7 Gheorghe Polizu street, 011061 Bucharest, Romania.
| | - Cristian Matei
- Faculty of Applied Chemistry and Material Science, University "Politehnica" of Bucharest, 1-7 Gheorghe Polizu street, 011061 Bucharest, Romania.
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, University "Ovidius" of Constanta, 1 Aleea Universitatii, 900470 Constanta, Romania.
| | - Lucia Moldovan
- Departament of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania.
| |
Collapse
|
10
|
Oliveira VDM, Neri RCDA, Monte FTDD, Roberto NA, Costa HMS, Assis CRD, Santos JF, Bezerra RS, Porto ALF. Crosslink-free collagen from Cichla ocellaris: Structural characterization by FT-IR spectroscopy and densitometric evaluation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Rodríguez F, Morán L, González G, Troncoso E, Zúñiga RN. Collagen extraction from mussel byssus: a new marine collagen source with physicochemical properties of industrial interest. Journal of Food Science and Technology 2017; 54:1228-1238. [PMID: 28416873 DOI: 10.1007/s13197-017-2566-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/08/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
Mussel byssus is a by-product of mussel production and is a potential source of collagen. The goal of this study was to extract collagen from the byssus of Chilean mussel using an enzymatic method and characterize it. A pepsin-aided extraction method was employed where first an enzymatic hydrolysis at two pepsin/substrate ratios (1:50 or 4:50) and times (4 or 24 h) was done. Extraction was conducted at 80 °C for 24 h, in a 0.5 N acetic acid solution. All samples were analyzed for collagen content, amino acid profile, turbidity, viscosity, solubility, denaturation temperature and surface tension. Hydrolysis time had significant effect on collagen content, hydroxyproline content and extraction yield. Hydrolysis with a pepsin/byssus ratio of 4:50 for 24 h gave the better extraction performance with values of 69 mg/g protein, 1.8 mg/g protein and 30%, for collagen content, hydroxyproline content and extraction yield, respectively. No differences were found for the viscosity and surface tension of collagen dispersions, suggesting that the enzymatic hydrolysis did not affect the integrity of the collagen molecule. Denaturation temperature of freeze-dried byssus collagen presented a high value (83-91 °C), making this kind of collagen a very interesting material for encapsulation of bioactive molecules and for biomedical applications.
Collapse
Affiliation(s)
- F Rodríguez
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago Chile
| | - L Morán
- Department of Chemical and Biochemical Engineering, Instituto Tecnológico de Zacatepec, Calzada Tecnológico 27, Zacatepec, Morelos Mexico
| | - G González
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago Chile
| | - E Troncoso
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago Chile.,Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago Chile
| | - R N Zúñiga
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago Chile
| |
Collapse
|
12
|
Montroni D, Piccinetti C, Fermani S, Calvaresi M, Harrington MJ, Falini G. Exploitation of mussel byssus mariculture waste as a water remediation material. RSC Adv 2017. [DOI: 10.1039/c7ra06664c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The byssus is an alimentary industry waste with a unique combination of functional groups that has been successfully tested for the removal of charged aromatic dyes from water.
Collapse
Affiliation(s)
- Devis Montroni
- Dipartimento di Chimica “Giacomo Ciamician”
- Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| | - Corrado Piccinetti
- Laboratory of Fisheries and Marine Biology
- University of Bologna
- Fano
- Italy
| | - Simona Fermani
- Dipartimento di Chimica “Giacomo Ciamician”
- Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”
- Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| | - Matthew J. Harrington
- Department of Biomaterials
- Max-Planck Institute for Colloids and Interfaces
- Research Campus Golm
- Potsdam 14424
- Germany
| | - Giuseppe Falini
- Dipartimento di Chimica “Giacomo Ciamician”
- Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| |
Collapse
|