1
|
Wang Y, Zhao W, Zhang A, Li P, Liu J, Yi H. An insight into the mechanisms of foxtail millet bran polysaccharides retarding the digestibility of millet starch by in vitro simulated digestion. Food Chem 2025; 472:142881. [PMID: 39826515 DOI: 10.1016/j.foodchem.2025.142881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The influence of foxtail millet bran polysaccharides (MPs) on millet starch (MS) digestion was investigated in the three aspects (MPs, MP-MS gel properties, the interactions between MPs and MS). The results showed that MPs with a higher Mw (58-2552 kDa), a narrower Mw distribution (1.85-9.53) and greater digestive enzyme inhibition could rely on the stability of the MP-MS gel to affect starch digestibility. The stronger hydrogen bonding between MPs and MS was beneficial to form a stable gel network structure. Moreover, the adhesiveness, hardness, and springiness of MP-MS gel and the formation of lamellar structure reduced contact with digestive enzymes. The presence of glucose and the increase of digestive juice viscosity inhibited digestive enzymes diffusion and reduced starch digestibility. This study revealed the key factors and influence pathways in the digestion of MP-MS gel, providing new ideas for the development of low-glycemic index starch foods.
Collapse
Affiliation(s)
- Yunting Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Zhang S, Zhu S, Zhong F, Huang D, Chen X, Li Y. Study on the mechanism of various exogenous proteins with different inhibitions on wheat starch digestion: From the distribution behaviors of protein in the starch matrix. Int J Biol Macromol 2023:124909. [PMID: 37230453 DOI: 10.1016/j.ijbiomac.2023.124909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
This study aimed to compare the effect of various exogenous proteins on wheat starch (WS) digestion and assess the relevant mechanisms based on the distribution behaviors of exogenous proteins in the starch matrix. Rice protein (RP), soy protein isolate (SPI), and whey protein isolate (WPI) all effectively suppressed the rapid digestion of WS but with different modes. RP increased the slowly digestible starch content, while SPI and WPI increased the resistant starch content. Fluorescence images showed that RP aggregated and competed for effective space with starch granules, while SPI and WPI formed continuous network structures among the starch matrix. These distribution behaviors endowed different reductions in starch digestion by influencing the gelatinization and ordered structure of starch. Pasting and water mobility results suggested all exogenous proteins inhibited the water migration and swelling of starch. Simultaneously, X-ray diffraction and Fourier transform infrared spectroscopy analysis showed that exogenous proteins improved the ordered structures of starch. RP had a more significant effect on the long-term ordered structure, while SPI and WPI had a more effective effect on the short-term ordered structure. These findings will enrich the theory of exogenous protein inhibiting starch digestion and inspire the applications in low-glycemic index food.
Collapse
Affiliation(s)
- Shuhan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117542 Singapore, Singapore
| | - Xuemei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Function Food, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Interaction of whey protein isolate and natural deep eutectic solvents: Effect on conductivity, surface tension, stability, and flow behaviour. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Impact of laccase-induced protein cross-linking on the in vitro starch digestion of black highland barley noodles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
In vitro digestibility of gels from different starches: Relationship between kinetic parameters and microstructure. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Zheng M, Ye A, Zheng B, Zhang Y. Impacts of Whey Protein on Digestion of Lotus Seed Starch Subjected to a Dynamic In Vitro Gastric Digestion. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Soluble starch/whey protein isolate complex-stabilized high internal phase emulsion: Interaction and stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106377] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|