1
|
Plasil M, Futas J, Jelinek A, Burger PA, Horin P. Comparative Genomics of the Major Histocompatibility Complex (MHC) of Felids. Front Genet 2022; 13:829891. [PMID: 35309138 PMCID: PMC8924298 DOI: 10.3389/fgene.2022.829891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022] Open
Abstract
This review summarizes the current knowledge on the major histocompatibility complex (MHC) of the family Felidae. This family comprises an important domestic species, the cat, as well as a variety of free-living felids, including several endangered species. As such, the Felidae have the potential to be an informative model for studying different aspects of the biological functions of MHC genes, such as their role in disease mechanisms and adaptation to different environments, as well as the importance of genetic diversity for conservation issues in free-ranging or captive populations. Despite this potential, the current knowledge on the MHC in the family as a whole is fragmentary and based mostly on studies of the domestic cat and selected species of big cats. The overall structure of the domestic cat MHC is similar to other mammalian MHCs following the general scheme "centromere-MHC class I-MHC class III-MHC class II" with some differences in the gene contents. An unambiguously defined orthologue of the non-classical class I HLA-E gene has not been identified so far and the class II DQ and DP genes are missing or pseudogenized, respectively. A comparison with available genomes of other felids showed a generally high level of structural and sequence conservation of the MHC region. Very little and fragmentary information on in vitro and/or in vivo biological functions of felid MHC genes is available. So far, no association studies have indicated effects of MHC genetic diversity on a particular disease. No information is available on the role of MHC class I molecules in interactions with Natural Killer (NK) cell receptors or on the putative evolutionary interactions (co-evolution) of the underlying genes. A comparison of complex genomic regions encoding NK cell receptors (the Leukocyte Receptor Complex, LRC and the Natural Killer Cell Complex, NKC) in the available felid genomes showed a higher variability in the NKC compared to the LRC and the MHC regions. Studies of the genetic diversity of domestic cat populations and/or specific breeds have focused mainly on DRB genes. Not surprisingly, higher levels of MHC diversity were observed in stray cats compared to pure breeds, as evaluated by DRB sequencing as well as by MHC-linked microsatellite typing. Immunogenetic analysis in wild felids has only been performed on MHC class I and II loci in tigers, Namibian leopards and cheetahs. This information is important as part of current conservation tasks to assess the adaptive potential of endangered wild species at the human-wildlife interface, which will be essential for preserving biodiversity in a functional ecosystem.
Collapse
Affiliation(s)
- Martin Plasil
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jan Futas
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - April Jelinek
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, VIA, Vienna, Austria
| | - Petr Horin
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
2
|
Machuka EM, Muigai AWT, Amimo JO, Domelevo Entfellner JB, Lekolool I, Abworo EO, Pelle R. Comparative Analysis of SLA-1, SLA-2, and DQB1 Genetic Diversity in Locally-Adapted Kenyan Pigs and Their Wild Relatives, Warthogs. Vet Sci 2021; 8:180. [PMID: 34564574 PMCID: PMC8473215 DOI: 10.3390/vetsci8090180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Swine leukocyte antigen (SLA) plays a central role in controlling the immune response by discriminating self and foreign antigens and initiating an immune response. Studies on SLA polymorphism have demonstrated associations between SLA allelic variants, immune response, and disease resistance. The SLA polymorphism is due to host-pathogen co-evolution resulting in improved adaptation to diverse environments making SLA a crucial genomic region for comparative diversity studies. Although locally-adapted African pigs have small body sizes, they possess increased resilience under harsh environmental conditions and robust immune systems with reported tolerance to some diseases, including African swine fever. However, data on the SLA diversity in these pigs are not available. We characterized the SLA of unrelated locally-adapted domestic pigs from Homa Bay, Kenya, alongside exotic pigs and warthogs. We undertook SLA comparative diversity of the functionally expressed SLA class I (SLA-1, SLA-2) and II (DQB1) repertoires in these three suids using the reverse transcription polymerase chain reaction (RT-PCR) sequence-based typing (SBT) method. Our data revealed higher genetic diversity in the locally-adapted pigs and warthogs compared to the exotic pigs. The nucleotide substitution rates were higher in the peptide-binding regions of the SLA-1, SLA-2, and DQB1 loci, indicative of adaptive evolution. We obtained high allele frequencies in the three SLA loci, including some breed-specific private alleles, which could guide breeders to increase their frequency through selection if confirmed to be associated with enhanced resilience. Our study contributes to the growing body of knowledge on genetic diversity in free-ranging animal populations in their natural environment, availing the first DQB1 gene data from locally-adapted Kenyan pigs.
Collapse
Affiliation(s)
- Eunice Magoma Machuka
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
- Institute for Basic Sciences Technology and Innovation (PAUSTI), Pan African University, Nairobi P.O. Box 62000-00200, Kenya
| | - Anne W. Thairu Muigai
- Botany Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, 1680 Madison Avenue, The Ohio State University, Wooster, OH 44691, USA;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
| | - Isaac Lekolool
- Kenya Wildlife Services, Nairobi P.O. Box 40241-00100, Kenya;
| | - Edward Okoth Abworo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya;
| | - Roger Pelle
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
| |
Collapse
|
3
|
Zhang Z, Sun X, Chen M, Li L, Ren W, Xu S, Yang G. Genomic Organization and Phylogeny of MHC Class II Loci in Cetaceans. J Hered 2019; 110:332-339. [PMID: 30844043 DOI: 10.1093/jhered/esz005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/26/2019] [Indexed: 01/01/2023] Open
Abstract
Cetaceans are a suborder of secondarily adapted aquatic mammals with an enigmatic history involving a transition from land to sea approximately 55 Mya. During the transition period, cetaceans would have faced many new pathogen challenges, but limited information is available about the adaptive immune system of these mammals. The major histocompatibility complex (MHC) family plays a key role in antigen recognition and presentation in adaptive immunity, which is believed to have evolved in response to pathogens. In the present study, MHC class II loci were characterized in 7 published cetacean genome assemblies and the genomic organization of cetaceans was compared with that of their terrestrial relatives, the cow, sheep, and pig. A total of 9 MHC class II loci were identified in the cetacean genomes: DRA, DRB, DQA, DQB, DPB, DOA, DOB, DMA, and DMB. Sequences from 8 of the 9 genes included intact coding regions and were presumably functional. The organization of the MHC class II loci was conserved across the examined mammalian species, whereas the orientation and number of the alpha and beta genes varied among the species. The phylogenetic reconstruction of all MHC genes from Cetartiodactyla suggested that alpha and beta genes had different topologies. Additionally, based on a phylogenetic reconstruction of the multi-locus DRB, 2 (DRB1 and DRB2) of the 4 putative gene copies were hypothesized to have duplicated and evolved during the radiation of cetaceans.
Collapse
Affiliation(s)
- Zepeng Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaohui Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meixiu Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lili Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Castro-Prieto A, Wachter B, Melzheimer J, Thalwitzer S, Sommer S. Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera pardus pardus). ACTA ACUST UNITED AC 2011; 102:653-65. [PMID: 21914667 DOI: 10.1093/jhered/esr097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.
Collapse
Affiliation(s)
- Aines Castro-Prieto
- Evolutionary Genetics, Research Groups at the Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | | | | | | | | |
Collapse
|
5
|
MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris). Immunogenetics 2010; 62:667-79. [PMID: 20821315 DOI: 10.1007/s00251-010-0475-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal.
Collapse
|
6
|
Lineage pattern, trans-species polymorphism, and selection pressure among the major lineages of feline MHC-DRB peptide-binding region. Immunogenetics 2010; 62:307-17. [PMID: 20372886 DOI: 10.1007/s00251-010-0440-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
The long-term evolution of major histocompatibility complex (MHC) involves the birth-and-death process and independent divergence of loci during episodes punctuated by natural selection. Here, we investigated the molecular signatures of natural selection at exon-2 of MHC class II DRB gene which includes a part of the peptide-binding region (PBR) in seven of eight putative extant Felidae lineages. The DRB alleles in felids can be mainly divided into five lineages. Signatures of trans-species polymorphism among major allelic lineages indicate that balancing selection has maintained the MHC polymorphism for a long evolutionary time. Analysis based on maximum likelihood models of codon substitution revealed overall purifying selection acting on the feline DRB. Sites that have undergone positive selection and those that are under divergent selective pressure among lineages were detected and found to fall within the putative PBR. This study increased our understanding of the nature of selective forces acting on DRB during feline radiation.
Collapse
|