1
|
Gil-Henn H, Girault JA, Lev S. PYK2, a hub of signaling networks in breast cancer progression. Trends Cell Biol 2024; 34:312-326. [PMID: 37586982 DOI: 10.1016/j.tcb.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Breast cancer (BC) involves complex signaling networks characterized by extensive cross-communication and feedback loops between and within multiple signaling cascades. Many of these signaling pathways are driven by genetic alterations of oncogene and/or tumor-suppressor genes and are influenced by various environmental cues. We describe unique roles of the non-receptor tyrosine kinase (NRTK) PYK2 in signaling integration and feedback looping in BC. PYK2 functions as a signaling hub in various cascades, and its involvement in positive and negative feedback loops enhances signaling robustness, modulates signaling dynamics, and contributes to BC growth, epithelial-to-mesenchymal transition (EMT), stemness, migration, invasion, and metastasis. We also discuss the potential of PYK2 as a therapeutic target in various BC subtypes.
Collapse
Affiliation(s)
- Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1270, Sorbonne Université, 75005 Paris, France
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
2
|
Rowe CJ, Nwaolu U, Salinas D, Hong J, Nunez J, Lansford JL, McCarthy CF, Potter BK, Levi BH, Davis TA. Inhibition of focal adhesion kinase 2 results in a macrophage polarization shift to M2 which attenuates local and systemic inflammation and reduces heterotopic ossification after polysystem extremity trauma. Front Immunol 2023; 14:1280884. [PMID: 38116014 PMCID: PMC10728492 DOI: 10.3389/fimmu.2023.1280884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Heterotopic ossification (HO) is a complex pathology often observed in combat injured casualties who have sustained severe, high energy polytraumatic extremity injuries. Once HO has developed, prophylactic therapies are limited outside of surgical excision. Tourniquet-induced ischemia injury (IR) exacerbates trauma-mediated musculoskeletal tissue injury, inflammation, osteogenic progenitor cell development and HO formation. Others have shown that focal adhesion kinase-2 (FAK2) plays a key role in regulating early inflammatory signaling events. Therefore, we hypothesized that targeting FAK2 prophylactically would mitigate extremity trauma induced IR inflammation and HO formation. Methods We tested whether the continuous infusion of a FAK2 inhibitor (Defactinib, PF-573228; 6.94 µg/kg/min for 14 days) can mitigate ectopic bone formation (HO) using an established blast-related extremity injury model involving femoral fracture, quadriceps crush injury, three hours of tourniquet-induced limb ischemia, and hindlimb amputation through the fracture site. Tissue inflammation, infiltrating cells, osteogenic progenitor cell content were assessed at POD-7. Micro-computed tomography imaging was used to quantify mature HO at POD-56. Results In comparison to vehicle control-treated rats, FAK2 administration resulted in no marked wound healing complications or weight loss. FAK2 treatment decreased HO by 43%. At POD-7, marked reductions in tissue proinflammatory gene expression and assayable osteogenic progenitor cells were measured, albeit no significant changes in expression patterns of angiogenic, chondrogenic and osteogenic genes. At the same timepoint, injured tissue from FAK-treated rats had fewer infiltrating cells. Additionally, gene expression analyses of tissue infiltrating cells resulted in a more measurable shift from an M1 inflammatory to an M2 anti-inflammatory macrophage phenotype in the FAK2 inhibitor-treated group. Discussion Our findings suggest that FAK2 inhibition may be a novel strategy to dampen trauma-induced inflammation and attenuate HO in patients at high risk as a consequence of severe musculoskeletal polytrauma.
Collapse
Affiliation(s)
- Cassie J. Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Uloma Nwaolu
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Daniela Salinas
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jonathan Hong
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, United States
| | - Johanna Nunez
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, United States
| | - Jefferson L. Lansford
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
| | - Conor F. McCarthy
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
| | - Benjamin K. Potter
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
| | - Benjamin H. Levi
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, United States
| | - Thomas A. Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
3
|
Spatiotemporal dynamics of focal adhesion kinase. Nat Chem Biol 2023; 19:1444-1445. [PMID: 37349580 DOI: 10.1038/s41589-023-01371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
|
4
|
Tang P, Liu D, Wu Z, Cui H, Zhang R, Kuang Z. Inhibitory Effects and Mechanism of the Natural Compound Diaporthein B Extracted from Marine-Derived Fungi on Colon Cancer Cells. Molecules 2022; 27:2944. [PMID: 35566295 PMCID: PMC9101636 DOI: 10.3390/molecules27092944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 05/01/2022] [Indexed: 12/09/2022] Open
Abstract
This study aimed to investigate the inhibitory effects and mechanism of diaporthein B (DTB), a natural compound extracted from the fungus Penicillium sclerotiorum GZU-XW03-2, on human colon cancer cells. The inhibitory effect of DTB at different concentrations on the proliferation of colon cancer cells HCT116 and LOVO was detected at 24 and 48 h. The effect of cell migration and clone formation ability were detected by cell scratch and plate cloning experiments. Morphological changes were observed by Hoechst 33342 and Annexin-V/PI staining, and flow cytometry was used to detect the proportion of apoptotic cells. DTB significantly inhibited colon cancer cell proliferation, migration, and apoptosis in a dose-dependent manner without significant effects on normal colonic epithelial cells NCM460. The IC50 inhibition effect can be achieved after treatment with 3 μmol/L DTB for 24 h. Compared with the blank group, the migration and clonal-forming ability of colon cancer cells in the DTB group was significantly decreased (p < 0.01), while the apoptotic cells were significantly increased (p < 0.01) in a concentration-dependent manner. DTB can inhibit the proliferation and migration of human colon cancer cells HCT116 and LOVO and promote the apoptosis of human colon cancer cells.
Collapse
Affiliation(s)
- Peihua Tang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (P.T.); (D.L.); (Z.W.)
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dandan Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (P.T.); (D.L.); (Z.W.)
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zheli Wu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (P.T.); (D.L.); (Z.W.)
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Ren Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (P.T.); (D.L.); (Z.W.)
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zaoyuan Kuang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (P.T.); (D.L.); (Z.W.)
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
5
|
Kim J, Kang W, Kang SH, Park SH, Kim JY, Yang S, Ha SY, Paik YH. Proline-rich tyrosine kinase 2 mediates transforming growth factor-beta-induced hepatic stellate cell activation and liver fibrosis. Sci Rep 2020; 10:21018. [PMID: 33273492 PMCID: PMC7713048 DOI: 10.1038/s41598-020-78056-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatic fibrogenesis is characterized by activation of hepatic stellate cells (HSCs) and accumulation of extracellular matrix (ECM). The impact of ECM on TGF-β-mediated fibrogenic signaling pathway in HSCs has remained obscure. We studied the role of non-receptor tyrosine kinase focal adhesion kinase (FAK) family members in TGF-β-signaling in HSCs. We used a CCl4-induced liver fibrosis mice model to evaluate the effect of FAK family kinase inhibitors on liver fibrosis. RT-PCR and Western blot were used to measure the expression of its target genes; α-SMA, collagen, Nox4, TGF-β1, Smad7, and CTGF. Pharmacological inhibitors, siRNA-mediated knock-down, and plasmid-based overexpression were adopted to modulate the function and the expression level of proteins. Association of PYK2 activation with liver fibrosis was confirmed in liver samples from CCl4-treated mice and patients with significant fibrosis or cirrhosis. TGF-β treatment up-regulated expression of α-SMA, type I collagen, NOX4, CTGF, TGF-β1, and Smad7 in LX-2 cells. Inhibition of FAK family members suppressed TGF-β-mediated fibrogenic signaling. SiRNA experiments demonstrated that TGF-β1 and Smad7 were upregulated via Smad-dependent pathway through FAK activation. In addition, CTGF induction was Smad-independent and PYK2-dependent. Furthermore, RhoA activation was essential for TGF-β-mediated CTGF induction, evidenced by using ROCK inhibitor and dominant negative RhoA expression. We identified that TGF-β1-induced activation of PYK2-Src-RhoA triad leads to YAP/TAZ activation for CTGF induction in liver fibrosis. These findings provide new insights into the role of focal adhesion molecules in liver fibrogenesis, and targeting PYK2 may be an attractive target for developing novel therapeutic strategies for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jonghwa Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-gu, Seoul, 06351, Korea
| | - Wonseok Kang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-gu, Seoul, 06351, Korea
| | - So Hee Kang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-gu, Seoul, 06351, Korea
| | - Su Hyun Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-gu, Seoul, 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Ji Young Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-gu, Seoul, 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Sera Yang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-gu, Seoul, 06351, Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Han Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-gu, Seoul, 06351, Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
6
|
Oono K, Ohtake K, Watanabe C, Shiba S, Sekiya T, Kasono K. Contribution of Pyk2 pathway and reactive oxygen species (ROS) to the anti-cancer effects of eicosapentaenoic acid (EPA) in PC3 prostate cancer cells. Lipids Health Dis 2020; 19:15. [PMID: 32005121 PMCID: PMC6993438 DOI: 10.1186/s12944-019-1122-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background n-3 polyunsaturated fatty acids (n-3 PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are thought to exert protective effects in cardiovascular diseases. In addition, n-3 PUFAs have demonstrated anti-cancer effects in vitro and in vivo. Objective We investigated the anti-cancer effects and mechanism of action of EPA on PC3 prostate cancer cells in vitro. Methods PC3 cells were treated with various concentrations of EPA, and cell survival and the abilities of migration and invasion were evaluated. The time course of the growth inhibitory effect of EPA on PC3 cells was also assessed. The mechanism underlying the anti-cancer effects of EPA was investigated by human phosphokinase and human apoptosis antibody arrays, and confirmed by western blot analysis. We also examined the contribution of reactive oxygen species (ROS) to the effects of EPA using the ROS inhibitor N-acetyl cysteine. Results EPA decreased the survival of PC3 cells in a dose-dependent manner within 3 h of application, with an effective concentration of 500 μmol/L. EPA inhibited proline-rich tyrosine kinase (Pyk)2 and extracellular signal-regulated kinase 1/2 phosphorylation as determined by western blotting and the antibody arrays. The growth of PC3 cells was inhibited by EPA, which was dependent on ROS induction, while EPA inhibited Pyk2 phosphorylation independent of ROS production. Conclusions Inhibition of Pyk2 phosphorylation and ROS production contribute to the anticancer effects of EPA on PC3 cells.
Collapse
Affiliation(s)
- Keiichi Oono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kazuo Ohtake
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Chie Watanabe
- Laboratory of Clinical Pathology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Sachiko Shiba
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Takashi Sekiya
- Laboratory of Clinical Pathology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Keizo Kasono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
7
|
Tu-Sekine B, Padhi A, Jin S, Kalyan S, Singh K, Apperson M, Kapania R, Hur SC, Nain A, Kim SF. Inositol polyphosphate multikinase is a metformin target that regulates cell migration. FASEB J 2019; 33:14137-14146. [PMID: 31657647 DOI: 10.1096/fj.201900717rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metformin has been shown to alter cell adhesion protein expression, which is thought to play a role in its observed antitumor properties. We found that metformin treatment down-regulated integrin β1 concomitant with the loss of inositol polyphosphate multikinase (IPMK) in murine myocytes, adipocytes, and hepatocytes. To determine if IPMK was upstream of integrin β1 expression, we examined IPMK-/- mouse embryonic fibroblast cells and found that integrins β1 and β3 gene expression was reduced by half, relative to wild-type cells, whereas focal adhesion kinase (FAK) activity and Rho/Rac/Cdc42 protein levels were increased, resulting in migration defects. Using nanonet force microscopy, we determined that cell:extracellular matrix adhesion and cell contractility forces were decreased, confirming the functional relevance of integrin and Rho protein dysregulation. Pharmacological studies showed that inhibition of both FAK1 and proline-rich tyrosine kinase 2 partially restored integrin β1 expression, suggesting negative regulation of integrin β1 by FAK. Together our data indicate that IPMK participates in the regulation of cell migration and provides a potential link between metformin and wound healing impairment.-Tu-Sekine, B., Padhi, A., Jin, S., Kalyan, S., Singh, K., Apperson, M., Kapania, R., Hur, S. C., Nain, A., Kim, S. F. Inositol polyphosphate multikinase is a metformin target that regulates cell migration.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abinash Padhi
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sunghee Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Srivathsan Kalyan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karanpreet Singh
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Matthew Apperson
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Rakesh Kapania
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amrinder Nain
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
FAK and Pyk2 activity promote TNF-α and IL-1β-mediated pro-inflammatory gene expression and vascular inflammation. Sci Rep 2019; 9:7617. [PMID: 31110200 PMCID: PMC6527705 DOI: 10.1038/s41598-019-44098-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/09/2019] [Indexed: 01/07/2023] Open
Abstract
Protein tyrosine kinase (PTK) activity has been implicated in pro-inflammatory gene expression following tumor necrosis factor-α (TNF-α) or interkeukin-1β (IL-1β) stimulation. However, the identity of responsible PTK(s) in cytokine signaling have not been elucidated. To evaluate which PTK is critical to promote the cytokine-induced inflammatory cell adhesion molecule (CAM) expression including VCAM-1, ICAM-1, and E-selectin in human aortic endothelial cells (HAoECs), we have tested pharmacological inhibitors of major PTKs: Src and the focal adhesion kinase (FAK) family kinases - FAK and proline-rich tyrosine kinase (Pyk2). We found that a dual inhibitor of FAK/Pyk2 (PF-271) most effectively reduced all three CAMs upon TNF-α or IL-1β stimulation compared to FAK or Src specific inhibitors (PF-228 or Dasatinib), which inhibited only VCAM-1 expression. In vitro inflammation assays showed PF-271 reduced monocyte attachment and transmigration on HAoECs. Furthermore, FAK/Pyk2 activity was not limited to CAM expression but was also required for expression of various pro-inflammatory molecules including MCP-1 and IP-10. Both TNF-α and IL-1β signaling requires FAK/Pyk2 activity to activate ERK and JNK MAPKs leading to inflammatory gene expression. Knockdown of either FAK or Pyk2 reduced TNF-α-stimulated ERK and JNK activation and CAM expression, suggesting that activation of ERK or JNK is specific through FAK and Pyk2. Finally, FAK/Pyk2 activity is required for VCAM-1 expression and macrophage recruitment to the vessel wall in a carotid ligation model in ApoE-/- mice. Our findings define critical roles of FAK/Pyk2 in mediating inflammatory cytokine signaling and implicate FAK/Pyk2 inhibitors as potential therapeutic agents to treat vascular inflammatory disease such as atherosclerosis.
Collapse
|
9
|
Azizi R, Salemi Z, Fallahian F, Aghaei M. Inhibition of didscoidin domain receptor 1 reduces epithelial-mesenchymal transition and induce cell-cycle arrest and apoptosis in prostate cancer cell lines. J Cell Physiol 2019; 234:19539-19552. [PMID: 30963567 DOI: 10.1002/jcp.28552] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022]
Abstract
Didscoidin domain receptor 1 (DDR1) is involved in the progression of prostate cancer metastasis through stimulation of epithelial-mesenchymal transition (EMT). So DDR1 inhibition can be a helpful target for cancer metastasis prevention. So, we studied the effects of DDR1 inhibition on EMT as well as induction of cell-cycle arrest and apoptosis in prostate cancer cell lines. DDR1 expression was evaluated using reverse-transcription polymerase chain reaction and western blot analysis. The EMT-associated protein expression was determined using the western blot analysis and immunocytochemistry following treatment with various concentrations of DDR1 inhibitor. The activation of DDR1 and also downstream-signaling molecules Pyk2 and MKK7 were determined using western blot analysis. Cell survival and proliferation after DDR1 inhibition were evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide, bromodeoxyuridine, and colony formation assays. Flow cytometry analysis was used to determine the effects of DDR1 inhibition on cell-cycle arrest and apoptosis using annexin V/propidium iodide-based flow cytometry. Results showed that the protein expression of N-cadherin and vimentin were decreased whereas protein expression of E-cadherin was increased after DDR1 inhibition. Results of our western blot analysis indicated that DDR1 inhibitor effectively downregulated P-DDR1, P-Pyk2, and P-MKK7 levels. This result also showed that DDR1 inhibition decreased cell survival and proliferation, induced G1 cell-cycle arrest, induced apoptosis by an increase in the Bax/Bcl-2 ratio and depletion of the mitochondrial membrane potential, and also by reactive oxygen species creation in prostate cancer cells. These data show that DDR1 inhibition can result in the EMT prevention via inhibition of Pyk2 and MKK7 signaling pathway and induces cell-cycle arrest and apoptosis in prostate cancer cell lines. Thus, this study identifies DDR1 as an important target for modulating EMT and induction of apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Reza Azizi
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Salemi
- Department of Biochemistry, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Faranak Fallahian
- Department of Clinical Biochemistry, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran.,Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Pallarès V, Hoyos M, Chillón MC, Barragán E, Prieto Conde MI, Llop M, Falgàs A, Céspedes MV, Montesinos P, Nomdedeu JF, Brunet S, Sanz MÁ, González-Díaz M, Sierra J, Mangues R, Casanova I. Focal Adhesion Genes Refine the Intermediate-Risk Cytogenetic Classification of Acute Myeloid Leukemia. Cancers (Basel) 2018; 10:cancers10110436. [PMID: 30428571 PMCID: PMC6265715 DOI: 10.3390/cancers10110436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 02/04/2023] Open
Abstract
In recent years, several attempts have been made to identify novel prognostic markers in patients with intermediate-risk acute myeloid leukemia (IR-AML), to implement risk-adapted strategies. The non-receptor tyrosine kinases are proteins involved in regulation of cell growth, adhesion, migration and apoptosis. They associate with metastatic dissemination in solid tumors and poor prognosis. However, their role in haematological malignancies has been scarcely studied. We hypothesized that PTK2/FAK, PTK2B/PYK2, LYN or SRC could be new prognostic markers in IR-AML. We assessed PTK2, PTK2B, LYN and SRC gene expression in a cohort of 324 patients, adults up to the age of 70, classified in the IR-AML cytogenetic group. Univariate and multivariate analyses showed that PTK2B, LYN and PTK2 gene expression are independent prognostic factors in IR-AML patients. PTK2B and LYN identify a patient subgroup with good prognosis within the cohort with non-favorable FLT3/NPM1 combined mutations. In contrast, PTK2 identifies a patient subgroup with poor prognosis within the worst prognosis cohort who display non-favorable FLT3/NPM1 combined mutations and underexpression of PTK2B or LYN. The combined use of these markers can refine the highly heterogeneous intermediate-risk subgroup of AML patients, and allow the development of risk-adapted post-remission chemotherapy protocols to improve their response to treatment.
Collapse
Affiliation(s)
- Victor Pallarès
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, Pavelló 11, 2n pis, 08025 Barcelona, Spain.
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas nº 90, 08041 Barcelona, Spain.
| | - Montserrat Hoyos
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, Pavelló 11, 2n pis, 08025 Barcelona, Spain.
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas nº 90, 08041 Barcelona, Spain.
| | - M Carmen Chillón
- Servicio de Hematología, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer (CIC)-IBMCC, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Salamanca, 37007 Salamanca, Spain.
| | - Eva Barragán
- Hematology Department, Hospital Universitari i Politècnic La Fe, Department of Medicine, University of Valencia, and Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, 46026 Valencia, Spain.
| | - M Isabel Prieto Conde
- Servicio de Hematología, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer (CIC)-IBMCC, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Salamanca, 37007 Salamanca, Spain.
| | - Marta Llop
- Hematology Department, Hospital Universitari i Politècnic La Fe, Department of Medicine, University of Valencia, and Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, 46026 Valencia, Spain.
| | - Aïda Falgàs
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, Pavelló 11, 2n pis, 08025 Barcelona, Spain.
| | - María Virtudes Céspedes
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, Pavelló 11, 2n pis, 08025 Barcelona, Spain.
- CIBER en Bioinginiería, Biomateriales y Nanomedicina (CIBER-BBN), 08025 Barcelona, Spain.
| | - Pau Montesinos
- Hematology Department, Hospital Universitari i Politècnic La Fe, Department of Medicine, University of Valencia, and Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, 46026 Valencia, Spain.
| | - Josep F Nomdedeu
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas nº 90, 08041 Barcelona, Spain.
| | - Salut Brunet
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas nº 90, 08041 Barcelona, Spain.
| | - Miguel Ángel Sanz
- Hematology Department, Hospital Universitari i Politècnic La Fe, Department of Medicine, University of Valencia, and Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, 46026 Valencia, Spain.
| | - Marcos González-Díaz
- Servicio de Hematología, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer (CIC)-IBMCC, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Salamanca, 37007 Salamanca, Spain.
| | - Jorge Sierra
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas nº 90, 08041 Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, 08021 Barcelona, Spain.
- Hematology Department, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, Pavelló 11, 2n pis, 08025 Barcelona, Spain.
- CIBER en Bioinginiería, Biomateriales y Nanomedicina (CIBER-BBN), 08025 Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, 08021 Barcelona, Spain.
| | - Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, Pavelló 11, 2n pis, 08025 Barcelona, Spain.
- CIBER en Bioinginiería, Biomateriales y Nanomedicina (CIBER-BBN), 08025 Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, 08021 Barcelona, Spain.
| |
Collapse
|
11
|
A novel role for PTK2B in cultured beige adipocyte differentiation. Biochem Biophys Res Commun 2018; 501:851-857. [DOI: 10.1016/j.bbrc.2018.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
|