1
|
Köppl T, Vidotto E, Wohlmuth B. A 3D-1D coupled blood flow and oxygen transport model to generate microvascular networks. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3386. [PMID: 32659047 DOI: 10.1002/cnm.3386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
In this work, we introduce an algorithmic approach to generate microvascular networks starting from larger vessels that can be reconstructed without noticeable segmentation errors. Contrary to larger vessels, the reconstruction of fine-scale components of microvascular networks shows significant segmentation errors, and an accurate mapping is time and cost intense. Thus there is a need for fast and reliable reconstruction algorithms yielding surrogate networks having similar stochastic properties as the original ones. The microvascular networks are constructed in a marching way by adding vessels to the outlets of the vascular tree from the previous step. To optimise the structure of the vascular trees, we use Murray's law to determine the radii of the vessels and bifurcation angles. In each step, we compute the local gradient of the partial pressure of oxygen and adapt the orientation of the new vessels to this gradient. At the same time, we use the partial pressure of oxygen to check whether the considered tissue block is supplied sufficiently with oxygen. Computing the partial pressure of oxygen, we use a 3D-1D coupled model for blood flow and oxygen transport. To decrease the complexity of a fully coupled 3D model, we reduce the blood vessel network to a 1D graph structure and use a bi-directional coupling with the tissue which is described by a 3D homogeneous porous medium. The resulting surrogate networks are analysed with respect to morphological and physiological aspects.
Collapse
Affiliation(s)
- Tobias Köppl
- Chair for Numerics, University of Technology Munich, Garching, Germany
| | - Ettore Vidotto
- Chair for Numerics, University of Technology Munich, Garching, Germany
| | - Barbara Wohlmuth
- Chair for Numerics, University of Technology Munich, Garching, Germany
- Department of Mathematics, University of Bergen, Allegaten 41, 5020 Bergen, Norway, Germany
| |
Collapse
|
2
|
Kharche SR, So A, Salerno F, Lee TY, Ellis C, Goldman D, McIntyre CW. Computational Assessment of Blood Flow Heterogeneity in Peritoneal Dialysis Patients' Cardiac Ventricles. Front Physiol 2018; 9:511. [PMID: 29867555 PMCID: PMC5968396 DOI: 10.3389/fphys.2018.00511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/20/2018] [Indexed: 01/28/2023] Open
Abstract
Dialysis prolongs life but augments cardiovascular mortality. Imaging data suggests that dialysis increases myocardial blood flow (BF) heterogeneity, but its causes remain poorly understood. A biophysical model of human coronary vasculature was used to explain the imaging observations, and highlight causes of coronary BF heterogeneity. Post-dialysis CT images from patients under control, pharmacological stress (adenosine), therapy (cooled dialysate), and adenosine and cooled dialysate conditions were obtained. The data presented disparate phenotypes. To dissect vascular mechanisms, a 3D human vasculature model based on known experimental coronary morphometry and a space filling algorithm was implemented. Steady state simulations were performed to investigate the effects of altered aortic pressure and blood vessel diameters on myocardial BF heterogeneity. Imaging showed that stress and therapy potentially increased mean and total BF, while reducing heterogeneity. BF histograms of one patient showed multi-modality. Using the model, it was found that total coronary BF increased as coronary perfusion pressure was increased. BF heterogeneity was differentially affected by large or small vessel blocking. BF heterogeneity was found to be inversely related to small blood vessel diameters. Simulation of large artery stenosis indicates that BF became heterogeneous (increase relative dispersion) and gave multi-modal histograms. The total transmural BF as well as transmural BF heterogeneity reduced due to large artery stenosis, generating large patches of very low BF regions downstream. Blocking of arteries at various orders showed that blocking larger arteries results in multi-modal BF histograms and large patches of low BF, whereas smaller artery blocking results in augmented relative dispersion and fractal dimension. Transmural heterogeneity was also affected. Finally, the effects of augmented aortic pressure in the presence of blood vessel blocking shows differential effects on BF heterogeneity as well as transmural BF. Improved aortic blood pressure may improve total BF. Stress and therapy may be effective if they dilate small vessels. A potential cause for the observed complex BF distributions (multi-modal BF histograms) may indicate existing large vessel stenosis. The intuitive BF heterogeneity methods used can be readily used in clinical studies. Further development of the model and methods will permit personalized assessment of patient BF status.
Collapse
Affiliation(s)
- Sanjay R Kharche
- Kidney Clinical Research Unit, Lawson's Health Research Institute, Victoria Hospital, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Aaron So
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Fabio Salerno
- Kidney Clinical Research Unit, Lawson's Health Research Institute, Victoria Hospital, London, ON, Canada
| | - Ting-Yim Lee
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Chris Ellis
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Christopher W McIntyre
- Kidney Clinical Research Unit, Lawson's Health Research Institute, Victoria Hospital, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Yang J, Wang Y. Design of vascular networks: a mathematical model approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:515-529. [PMID: 23225739 DOI: 10.1002/cnm.2534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 11/03/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
In this paper, methods for the modeling of a realistic vascular tree in 3D space and for hemodynamic calculating throughout the simulated tree structure have been developed. Vascular trees are generated based on the power law relationship. Variations in branching asymmetry and segment length of the vasculature are precisely controlled by the designed gaussian distributions. The resolution limit of current imaging techniques for vessel detectability is simulated by designed pruning technique. On the basis of the generated diameters and lengths, the space locations of the vessel segments are calculated by optimizing the out-of-plane angles of two daughter branches. The generated vascular tree not only follows the power law relationship, but also maximizes the filling volume of the tree structure in 3D space. From the hemodynamic calculation in the simulated vasculature, the processes for which structural changes affect hemodynamic distributions are studied in detail. And also, the fractal nature and resistance of the vascular trees are quantified and compared. The developed method provides some insight into the design of the vascular trees in biology and may be used as a reference for the study of vascular diseases.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education of China School of Optics and Electronics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | | |
Collapse
|
4
|
van den Wijngaard JPHM, Schwarz JCV, van Horssen P, van Lier MGJTB, Dobbe JGG, Spaan JAE, Siebes M. 3D Imaging of vascular networks for biophysical modeling of perfusion distribution within the heart. J Biomech 2012; 46:229-39. [PMID: 23237670 DOI: 10.1016/j.jbiomech.2012.11.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 11/09/2012] [Indexed: 02/07/2023]
Abstract
One of the main determinants of perfusion distribution within an organ is the structure of its vascular network. Past studies were based on angiography or corrosion casting and lacked quantitative three dimensional, 3D, representation. Based on branching rules and other properties derived from such imaging, 3D vascular tree models were generated which were rather useful for generating and testing hypotheses on perfusion distribution in organs. Progress in advanced computational models for prediction of perfusion distribution has raised the need for more realistic representations of vascular trees with higher resolution. This paper presents an overview of the different methods developed over time for imaging and modeling the structure of vascular networks and perfusion distribution, with a focus on the heart. The strengths and limitations of these different techniques are discussed. Episcopic fluorescent imaging using a cryomicrotome is presently being developed in different laboratories. This technique is discussed in more detail, since it provides high-resolution 3D structural information that is important for the development and validation of biophysical models but also for studying the adaptations of vascular networks to diseases. An added advantage of this method being is the ability to measure local tissue perfusion. Clinically, indices for patient-specific coronary stenosis evaluation derived from vascular networks have been proposed and high-resolution noninvasive methods for perfusion distribution are in development. All these techniques depend on a proper representation of the relevant vascular network structures.
Collapse
Affiliation(s)
- Jeroen P H M van den Wijngaard
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
5
|
Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 2010; 10:409-20. [PMID: 20132061 PMCID: PMC4580374 DOI: 10.1517/14712590903563352] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. AREAS COVERED IN THIS REVIEW We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. WHAT THE READER WILL GAIN The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. TAKE HOME MESSAGE It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.
Collapse
Affiliation(s)
- Richard P Visconti
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Vladimir Kasyanov
- Riga Stradins University, Department of Anatomy and Anthropology, Riga, Latvia
| | - Carmine Gentile
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Jing Zhang
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Roger R Markwald
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Vladimir Mironov
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Lagerveld BW, van Horssen P, Pes MPL, van den Wijngaard JPHM, Streekstra GJ, de la Rosette JJMCH, Wijkstra H, Spaan JAE. Immediate effect of kidney cryoablation on renal arterial structure in a porcine model studied by imaging cryomicrotome. J Urol 2010; 183:1221-6. [PMID: 20096877 DOI: 10.1016/j.juro.2009.11.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE Injury to blood microvessels has a crucial role in effective cryoablation for renal masses. We visualized vascular injury induced by a clinically applied cryoablation instrument and established a microvascular diameter threshold for vascular damage. MATERIALS AND METHODS In 5 anesthetized pigs 1 kidney each was exposed and 3, 17 gauge cryoneedles were inserted in 1 pole. Tissue was exposed to freezing for 2 x 10 minutes with a 10-minute thaw between freezes. After nephrectomy the arteries were injected with fluorescence dyed casting material and the kidney was frozen to -20C and cut in 40 to 60 micron slices in the imaging cryomicrotome, where fluorescent images of the cutting plane of the bulk were obtained. This resulted in a 3-dimensional image of the arterial tree that was segmented, resulting in unbranched vessel segments. Histograms were constructed with the total segment length per diameter bin plotted as function of diameter. RESULTS The ablated zone was sharply demarcated on fluorescent and normal light images. Mean +/- SD diameter at the peak of the histogram from control areas was 152.4 +/- 5.3 micron. Compared to control areas the peak diameter of ablated areas was shifted to a larger diameter by an average of 25.4 +/- 2.6 micron. CONCLUSIONS Immediate renal cryoablation injury destroys arteries smaller than 180 micron. Branching structures of larger arteries remain anatomically intact and connected to vascular structures in surrounding tissue.
Collapse
Affiliation(s)
- Brunolf W Lagerveld
- Department of Urology, St Lucas Andreas Hospital, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bui A, Sutalo ID, Manasseh R, Liffman K. Dynamics of pulsatile flow in fractal models of vascular branching networks. Med Biol Eng Comput 2009; 47:763-72. [PMID: 19468774 DOI: 10.1007/s11517-009-0492-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 04/16/2009] [Indexed: 11/30/2022]
Abstract
Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.
Collapse
Affiliation(s)
- Anh Bui
- Division of Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 56, Highett, VIC, 3190, Australia.
| | | | | | | |
Collapse
|
8
|
Spaan J, Kolyva C, van den Wijngaard J, ter Wee R, van Horssen P, Piek J, Siebes M. Coronary structure and perfusion in health and disease. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3137-53. [PMID: 18559321 DOI: 10.1098/rsta.2008.0075] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Blood flow is distributed through the heart muscle via a system of vessels forming the coronary circulation. The perfusion of the myocardium can be hampered by atherosclerosis creating localized obstructions in the epicardial vessels or by microvascular disease. In early stages of the disease, these impediments to blood flow are offset by dilation of the resistance vessels, which normally compensates for a decrease in perfusion pressure or increased metabolism. However, this dilatory reserve can become exhausted, which in general occurs first at the deeper layers of the heart wall where intramural vessels are subjected to compressive forces related to heart contraction. In the catheterization laboratory, guide wires of 0.33 mm diameter are available that are equipped with a pressure and flow velocity sensor at the tip, which can be positioned distal to the stenosis. These signals provide information about the impediment of the stenosis on coronary flow and allow for the evaluation of the status of the microcirculation. However, the interpretation of these signals is strongly model-dependent and therefore it is of paramount importance to develop realistic models reflecting the anatomy and unique physiology of the coronary circulation.
Collapse
Affiliation(s)
- Jos Spaan
- Department of Medical Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
9
|
Lee JW, Kang MY, Yang HJ, Lee E. Fluid-dynamic optimality in the generation-averaged length-to-diameter ratio of the human bronchial tree. Med Biol Eng Comput 2007; 45:1071-8. [PMID: 17653783 DOI: 10.1007/s11517-007-0232-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 07/05/2007] [Indexed: 11/25/2022]
Abstract
It is shown in this paper that the nearly constant length-to-diameter ratio observed with conducting airways of human bronchial tree can be explained based on the fluid dynamic optimality principle. In any branched tube there are two pressure loss mechanisms, one for wall friction in the tube section and the other for flow division in the branching section, and there exists an optimal length-to-diameter ratio which minimizes the total pressure loss for a branched tube in laminar flow condition. The optimal length-to-diameter ratio predicted by the pressure loss minimization shows an excellent agreement with the length-to-diameter ratios found in the human conducting airways.
Collapse
Affiliation(s)
- Jin W Lee
- Department of Mechanical Engineering also Systems Bio-Dynamics Research Center, Pohang University of Science and Technology, Hyoja 31, Pohang, Kyungbuk 790-784, South Korea.
| | | | | | | |
Collapse
|