1
|
Roumelioti ME, Glew RH, Khitan ZJ, Rondon-Berrios H, Argyropoulos CP, Malhotra D, Raj DS, Agaba EI, Rohrscheib M, Murata GH, Shapiro JI, Tzamaloukas AH. Fluid balance concepts in medicine: Principles and practice. World J Nephrol 2018; 7:1-28. [PMID: 29359117 PMCID: PMC5760509 DOI: 10.5527/wjn.v7.i1.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several illnesses. For these reasons, extracellular volume in severe illness merits a separate third concept of body fluid balance.
Collapse
Affiliation(s)
- Maria-Eleni Roumelioti
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Robert H Glew
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Zeid J Khitan
- Division of Nephrology, Department of Medicine, Joan Edwards School of Medicine, Marshall University, Huntington, WV 25701, United States
| | - Helbert Rondon-Berrios
- Division of Renal and Electrolyte, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Christos P Argyropoulos
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Deepak Malhotra
- Division of Nephrology, Department of Medicine, University of Toledo School of Medicine, Toledo, OH 43614-5809, United States
| | - Dominic S Raj
- Division of Renal Disease and Hypertension, Department of Medicine, George Washington University, Washington, DC 20037, United States
| | - Emmanuel I Agaba
- Division of Nephology, Department of Medicine, Jos University Medical Center, Jos, Plateau State 930001, Nigeria
| | - Mark Rohrscheib
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Glen H Murata
- Research Service, Raymond G Murphy VA Medical Center and University of New Mexico School of Medicine, Albuquerque, NM 87108, United States
| | | | - Antonios H Tzamaloukas
- Research Service, Raymond G Murphy VA Medical Center and University of New Mexico School of Medicine, Albuquerque, NM 87108, United States
| |
Collapse
|
2
|
Montgomery LD, Montgomery RW, Gerth WA, Lew SQ, Klein MD, Stewart JM, Medow MS, Velasquez MT. Bioimpedance monitoring of cellular hydration during hemodialysis therapy. Hemodial Int 2016; 21:575-584. [PMID: 27860119 DOI: 10.1111/hdi.12511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Introduction The aim of this paper is to describe and demonstrate how a new bioimpedance analytical procedure can be used to monitor cellular hydration of End Stage Renal Disease (ESRD) patients during hemodialysis (HD). Methods A tetra-polar bioimpedance spectroscope (BIS), (UFI Inc., Morro Bay, CA), was used to measure the tissue resistance and reactance of the calf of 17 ESRD patients at 40 discrete frequencies once a minute during dialysis treatment. These measurements were then used to derive intracellular, interstitial, and intravascular compartment volume changes during dialysis. Findings The mean (± SD) extracellular resistance increased during dialysis from 92.4 ± 3.5 to 117.7 ± 5.8 Ohms. While the mean intracellular resistance decreased from 413.5 ± 11.7 to 348.5 ± 8.2 Ohms. It was calculated from these data that the mean intravascular volume fell 9.5%; interstitial volume fell 33.4%; and intracellular volume gained 20.3%. Discussion These results suggest that an extensive fluid shift into the cells may take place during HD. The present research may contribute to a better understanding of how factors that influence fluid redistribution may affect an ESRD patient during dialysis. In light of this finding, it is concluded that the rate of vascular refill is jointly determined with the rate of "cellular refill" and the transfer of fluid from the intertitial compartment into the intravascular space.
Collapse
Affiliation(s)
| | | | | | - Susie Q Lew
- George Washington University Medical Center, Washington, DC, USA
| | | | | | | | | |
Collapse
|
3
|
Extraction of Cole parameters from the electrical bioimpedance spectrum using stochastic optimization algorithms. Med Biol Eng Comput 2015. [DOI: 10.1007/s11517-015-1355-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Barbosa EJL, Glad CAM, Nilsson AG, Bosaeus N, Nyström HF, Svensson PA, Bengtsson BÅ, Nilsson S, Bosaeus I, Boguszewski CL, Johannsson G. Extracellular water and blood pressure in adults with growth hormone (GH) deficiency: a genotype-phenotype association study. PLoS One 2014; 9:e105754. [PMID: 25157616 PMCID: PMC4144955 DOI: 10.1371/journal.pone.0105754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 07/28/2014] [Indexed: 12/18/2022] Open
Abstract
Objectives Growth hormone deficiency (GHD) in adults is associated with decreased extracellular water volume (ECW). In response to GH replacement therapy (GHRT), ECW increases and blood pressure (BP) reduces or remains unchanged. Our primary aim was to study the association between polymorphisms in genes related to renal tubular function with ECW and BP before and 1 year after GHRT. The ECW measures using bioimpedance analysis (BIA) and bioimpedance spectroscopy (BIS) were validated against a reference method, the sodium bromide dilution method (Br−). Design and Methods Using a candidate gene approach, fifteen single-nucleotide polymorphisms (SNPs) in nine genes with known impact on renal tubular function (AGT, SCNN1A, SCNN1G, SLC12A1, SLC12A3, KCNJ1, STK39, WNK1 and CASR) were genotyped and analyzed for associations with ECW and BP at baseline and with their changes after 1 year of GHRT in 311 adult GHD patients. ECW was measured with the Br−, BIA, and BIS. Results Both BIA and BIS measurements demonstrated similar ECW results as the reference method. At baseline, after adjustment for sex and BMI, SNP rs2291340 in the SLC12A1 gene was associated with ECW volume in GHD patients (p = 0.039). None of the SNPs influenced the ECW response to GHRT. One SNP in the SLC12A3 gene (rs11643718; p = 0.024) and three SNPs in the SCNN1G gene [rs5723 (p = 0.02), rs5729 (p = 0.016) and rs13331086 (p = 0.035)] were associated with the inter-individual differences in BP levels at baseline. A polymorphism in the calcium-sensing receptor (CASR) gene (rs1965357) was associated with changes in systolic BP after GHRT (p = 0.036). None of these associations remained statistically significant when corrected for multiple testing. Conclusion The BIA and BIS are as accurate as Br− to measure ECW in GHD adults before and during GHRT. Our study provides the first evidence that individual polymorphisms may have clinically relevant effects on ECW and BP in GHD adults.
Collapse
Affiliation(s)
- Edna J. L. Barbosa
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SEMPR, Servico de Endocrinologia e Metabologia do Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil
| | - Camilla A. M. Glad
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna G. Nilsson
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Bosaeus
- Department of Clinical Nutrition Unit, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Filipsson Nyström
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Arne Svensson
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt-Åke Bengtsson
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Institute of Mathematical Sciences, Department of Mathematical Statistics, Chalmers University of Technology, Chalmers, Gothenburg, Sweden
| | - Ingvar Bosaeus
- Department of Clinical Nutrition Unit, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cesar Luiz Boguszewski
- SEMPR, Servico de Endocrinologia e Metabologia do Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil
| | - Gudmundur Johannsson
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
5
|
Jaffrin MY, Bousbiat S. Accuracy of plantar electrodes compared with hand and foot electrodes in fat-free-mass measurement. JOURNAL OF HEALTHCARE ENGINEERING 2014; 5:123-44. [PMID: 24918180 DOI: 10.1260/2040-2295.5.2.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This paper investigates the measurement of fat-free mass (FFM) by bioimpedance using foot-to-foot impedancemeters (FFI) with plantar electrodes measuring the foot-to-foot resistance R34 and hand-to-foot medical impedancemeters. FFM measurements were compared with corresponding data using Dual X-ray absorptiometry (DXA). Equations giving FFM were established using linear multiple regression on DXA data in a first group of 170 subjects. For validation, these equations were used on a second group of 86 subjects, and FFM were compared with DXA data; no significant difference was observed. The same protocol was repeated, but using electrodes on the right hand and foot in standing position to measure the hand to-foot resistance R13. Mean differences with DXA were higher for R13 than for R34. Effect of electrode size and feet position on resistance was also investigated. R34 decreased when electrode area increased or if feet were moved forward. It decreased if feet were moved backward. A proper configuration of contact electrodes can improve measurement accuracy and reproducibility of FFI.
Collapse
Affiliation(s)
- Michel Y Jaffrin
- Department of Biological Engineering, Technological University of Compiegne, UMR CNRS 7338, Compiegne Cedex, France
| | - Sana Bousbiat
- Department of Biological Engineering, Technological University of Compiegne, UMR CNRS 7338, Compiegne Cedex, France
| |
Collapse
|
6
|
Bousbiat S, Jaffrin MY, Dongmo E. Comparison of body fat-free masses calculated from hand-to-foot and foot-to-foot resistances with DXA measurements. Med Biol Eng Comput 2011; 49:1329-36. [PMID: 21915720 DOI: 10.1007/s11517-011-0827-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/13/2011] [Indexed: 02/06/2023]
Abstract
This article compares the determination of body fat-free-mass (FFM) by impedance, using either hand-to-foot resistance (R₁₃) or foot-to-foot one (R₃₄) from comparison with dual X-ray absorptiometry (DXA) measurements in a normal population. The first goal was to see if the foot-to-foot resistance used in body fat analysers provides less accurate information for body FFM than the hand-to-foot one used by medical impedance-meters. Another goal was to compare the prediction accuracy of six different regression equations of FFM for each sex and for each resistance relatively to DXA. The impedancemeter used in this study was a Tefal prototype with 4 plantar electrodes and 4 additional electrodes for the hands and providing hand-to-foot and foot-to-foot resistances. Coefficients of these correlations were determined by comparison with FFM measured by DXA in a 1st cohort of 170 healthy adults. For an independent validation, these equations were tested in a 2nd cohort of 86 adults who underwent the same impedance and DXA protocols, using Student's paired t-tests. The accuracy of FFM prediction increased generally with the number of physiologic parameters included in the regression, but none of our equations gave FFM predictions significantly different from DXA. FFM calculated from the foot-to-foot resistance were closer to DXA values than those calculated from hand-to-foot resistance, as their average P-value of comparison with DXA was higher at 0.695 against 0.387 for R₁₃.
Collapse
Affiliation(s)
- Sana Bousbiat
- Department of Biological Engineering, Technological University of Compiègne, UMR CNRS 6600, BP 20529, 60205, Compiègne Cedex, France
| | | | | |
Collapse
|
7
|
Graversen JA, Korets R, Hruby GW, Valderrama OM, Mues AC, Katsumi HK, Cortes JAS, Landman J, Gupta M. Evaluation of bioimpedance as novel predictor of extracorporeal shockwave lithotripsy success. J Endourol 2011; 25:1503-6. [PMID: 21815805 DOI: 10.1089/end.2010.0687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Obesity has been identified as a limitation of extracorporeal shockwave lithotripsy (SWL). The obesity metrics of body mass index (BMI) and skin-to-stone distance (SSD) have been evaluated as predictors of SWL success. While SSD has demonstrated a strong correlation with success, BMI has not. Bioimpedance analysis (BIA) is an accurate way of determining body adiposity. We evaluated fat mass percentage (FMP) as measured by BIA as a predictor of SWL success. PATIENTS AND METHODS We prospectively collected body composition data using the Imp-DF50 Body Impedance Analyzer on consecutive patients undergoing SWL. All generated variables, including FMP, along with demographics, BMI, stone size, and stone composition, were analyzed. Patients were evaluated for success, defined as no evidence of stones on radiography of the kidneys, ureters, and bladder at follow-up. RESULTS Fifty-two consecutive patients were enrolled in the study, of which 37 had the necessary metrics to be included in the analysis. Twenty-three (62.2%) patients were stone free while 14 (37.8%) were found to have residual stone at follow-up. There was no difference in sex, stone laterality, mean age, and stone size between the groups. For the success and failure groups, the mean BMI was 25.8 kg/m(2) and 29.8 kg/m(2) (P=0.0091), and mean FMP 24.6% and 32.2% (P=0.0034). On mirrored multivariable analysis, both BMI (OR=0.735, P=0.026) and FMP (OR=0.806, P=0.010) were associated with success. Patients with a FMP ≥35% had a reduced success rate compared with those with a FMP <35% (14% vs 73%, respectively, P=0.0028). CONCLUSIONS Both BMI and FMP both appear to be independent predictors of success. Based on these findings, a large study examining the relationship between BMI, FMP, SSD, and SWL success is warranted. A preoperative FMP ≥35% is associated with a 14% success rate, and alternative treatment strategies for urolithiasis should be considered.
Collapse
Affiliation(s)
- Joseph A Graversen
- Department of Urology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ibrahim F, Faisal T, Salim MIM, Taib MN. Non-invasive diagnosis of risk in dengue patients using bioelectrical impedance analysis and artificial neural network. Med Biol Eng Comput 2010; 48:1141-8. [PMID: 20683676 DOI: 10.1007/s11517-010-0669-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/09/2010] [Indexed: 01/02/2023]
Abstract
This paper presents a new approach to diagnose and classify early risk in dengue patients using bioelectrical impedance analysis (BIA) and artificial neural network (ANN). A total of 223 healthy subjects and 207 hospitalized dengue patients were prospectively studied. The dengue risk severity criteria was determined and grouped based on three blood investigations, namely, platelet (PLT) count (less than or equal to 30,000 cells per mm(3)), hematocrit (HCT) (increase by more than or equal to 20%), and either aspartate aminotransferase (AST) level (raised by fivefold the normal upper limit) or alanine aminotransferase (ALT) level (raised by fivefold the normal upper limit). The dengue patients were classified according to their risk groups and the corresponding BIA parameters were subsequently obtained and quantified. Four parameters were used for training and testing the ANN which are day of fever, reactance, gender, and risk group's quantification. Day of fever was defined as the day of fever subsided, i.e., when the body temperature fell below 37.5°C. The blood investigation and the BIA data were taken for 5 days. The ANN was trained via the steepest descent back propagation with momentum algorithm using the log-sigmoid transfer function while the sum-squared error was used as the network's performance indicator. The best ANN architecture of 3-6-1 (3 inputs, 6 neurons in the hidden layer, and 1 output), learning rate of 0.1, momentum constant of 0.2, and iteration rate of 20,000 was pruned using a weight-eliminating method. Eliminating a weight of 0.05 enhances the dengue's prediction risk classification accuracy of 95.88% for high risk and 96.83% for low risk groups. As a result, the system is able to classify and diagnose the risk in the dengue patients with an overall prediction accuracy of 96.27%.
Collapse
Affiliation(s)
- F Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
9
|
Medrano G, Eitner F, Walter M, Leonhardt S. Model-based correction of the influence of body position on continuous segmental and hand-to-foot bioimpedance measurements. Med Biol Eng Comput 2010; 48:531-41. [PMID: 20405231 DOI: 10.1007/s11517-010-0602-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Bioimpedance spectroscopy (BIS) is suitable for continuous monitoring of body water content. The combination of body posture and time is a well-known source of error, which limits the accuracy and therapeutic validity of BIS measurements. This study evaluates a model-based correction as a possible solution. For this purpose, an 11-cylinder model representing body impedance distribution is used. Each cylinder contains a nonlinear two-pool model to describe fluid redistribution due to changing body position and its influence on segmental and hand-to-foot (HF) bioimpedance measurements. A model-based correction of segmental (thigh) and HF measurements (Xitron Hydra 4200) in nine healthy human subjects (following a sequence of 7 min supine, 20 min standing, 40 min supine) has been evaluated. The model-based compensation algorithm represents a compromise between accuracy and simplicity, and reduces the influence of changes in body position on the measured extracellular resistance and extracellular fluid by up to 75 and 70%, respectively.
Collapse
Affiliation(s)
- Guillermo Medrano
- Philips Chair for Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, Germany.
| | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To review various methods for measuring body composition by bioimpedance and their limitations, as well as available impedance meters, including body fat analyzers for home use. RECENT FINDINGS Bioimpedance spectroscopy, which requires multifrequency impedance meters, is preferable for fluid volume measurements, especially extracellular fluid, whereas bioimpedance analysis at 50 kHz is more widely used for measuring fat-free mass. A method for using bioimpedance spectroscopy equations with 50 kHz impedance meters has been recently proposed and successfully tested. Low cost foot-to-foot impedance meters (body fat analyzers) with plantar electrodes on a body scale, that are easy and fast to use, have been compared with medical impedance meters and with dual X-ray absorptiometry measurements and found reasonably accurate, except for individuals with very low or high BMI. SUMMARY Body composition by bioimpedance is gaining acceptance in nutrition, hemodialysis, gerontology and sports medicine. Body fat analyzers that have been validated by comparison with dual x-ray absorptiometry could be useful to general practitioners, nutritionists and cardiologists.
Collapse
Affiliation(s)
- Michel Y Jaffrin
- Department of Biological Engineering, UMR CNRS 6600, University of Technology of Compiegne, Compiegne, France.
| |
Collapse
|