1
|
Schmid S, Burkhart KA, Allaire BT, Grindle D, Bassani T, Galbusera F, Anderson DE. Spinal Compressive Forces in Adolescent Idiopathic Scoliosis With and Without Carrying Loads: A Musculoskeletal Modeling Study. Front Bioeng Biotechnol 2020; 8:159. [PMID: 32195239 PMCID: PMC7062648 DOI: 10.3389/fbioe.2020.00159] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
The pathomechanisms of curve progression in adolescent idiopathic scoliosis (AIS) remain poorly understood and biomechanical data are limited. A deeper insight into spinal loading could provide valuable information toward the improvement of current treatment strategies. This work therefore aimed at using subject-specific musculoskeletal full-body models of patients with AIS to predict segmental compressive forces around the curve apex and to investigate how these forces are affected by simulated load carrying. Models were created based on spatially calibrated biplanar radiographic images from 24 patients with mild to moderate AIS and validated by comparing predictions of paravertebral muscle activity with reported values from in vivo studies. Spinal compressive forces were predicted during unloaded upright standing as well as standing with external loads of 10, 15, and 20% of body weight (BW) applied to the scapulae to simulate carrying a backpack in the regular way on the back as well as in front of the body and over the shoulder on the concave and convex sides of the scoliotic curve. The predicted muscle activities around the curve apex were higher on the convex side for the erector spinae (ES) and multifidi (MF) muscles, which was comparable to the EMG-based in vivo measurements from the literature. In terms of spinal loading, the implementation of spinal deformity resulted in a 10% increase of compressive force at the curve apex during unloaded upright standing. Apical compressive forces further increased by 50–62% for a simulated 10% BW load and by 77–94% and 103–128% for 15% and 20% BW loads, respectively. Moreover, load-dependent compressive force increases were the lowest in the regular backpack and the highest in the frontpack and convex conditions, with concave side-carrying forces in between. The predictions indicated increased segmental compressive forces during unloaded upright standing, which could be ascribed to the scoliotic deformation. When carrying loads, compressive forces further increased depending on the carrying mode and the weight of the load. These results can be used as a basis for further studies investigating segmental loading in AIS patients during functional activities. Models can thereby be created using the same approach as proposed in this study.
Collapse
Affiliation(s)
- Stefan Schmid
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, United States.,Spinal Movement Biomechanics Group, Division of Physiotherapy, Department of Health Professions, Bern University of Applied Sciences, Bern, Switzerland
| | - Katelyn A Burkhart
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, United States
| | - Brett T Allaire
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Daniel Grindle
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Division of Engineering Mechanics, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Tito Bassani
- Laboratory of Biological Structures Mechanics (LABS), IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Fabio Galbusera
- Laboratory of Biological Structures Mechanics (LABS), IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Dennis E Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Arjunan SP, Siddiqi A, Swaminathan R, Kumar DK. Implementation and experimental validation of surface electromyogram and force model of Tibialis Anterior muscle for examining muscular factors. Proc Inst Mech Eng H 2020; 234:200-209. [DOI: 10.1177/0954411919890150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study reports a surface electromyogram and force of contraction model. The objective was to investigate the effect of changes in the size, type and number of motor units in the Tibialis Anterior muscle to surface electromyogram and force of dorsiflexion. A computational model to simulate surface electromyogram and associated force of contraction by the Tibialis Anterior muscle was developed. This model was simulated for isometric dorsiflexion, and comparative experiments were conducted for validation. Repeated simulations were performed to investigate the different parameters and evaluate inter-experimental variability. An equivalence statistical test and the Bland–Altman method were used to observe the significance between the simulated and experimental data. Simulated and experimentally recorded data had high similarity for the three measures: maximal power of power spectral density ( p < 0.0001), root mean square of surface electromyogram ( p < 0.0001) and force recorded at the footplate ( p < 0.03). Inter-subject variability in the experimental results was in-line with the variability in the repeated simulation results. This experimentally validated computational model for the surface electromyogram and force of the Tibialis Anterior muscle is significant as it allows the examination of three important muscular factors associated with ageing and disease: size, fibre type and number of motor units.
Collapse
Affiliation(s)
| | - Ariba Siddiqi
- Biosignals Lab, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | | | |
Collapse
|
3
|
Siddiqi A, Poosapadi Arjunan S, Kumar DK. Computational model to investigate the relative contributions of different neuromuscular properties of tibialis anterior on force generated during ankle dorsiflexion. Med Biol Eng Comput 2018; 56:1413-1423. [PMID: 29335929 DOI: 10.1007/s11517-018-1788-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate. Graphical abstract Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion.
Collapse
Affiliation(s)
- Ariba Siddiqi
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| | - Sridhar Poosapadi Arjunan
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia.
| | - Dinesh Kant Kumar
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Mun KR, Yeo BBS, Guo Z, Chung SC, Yu H. Resistance training using a novel robotic walker for over-ground gait rehabilitation: a preliminary study on healthy subjects. Med Biol Eng Comput 2017; 55:1873-1881. [PMID: 28321683 DOI: 10.1007/s11517-017-1634-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022]
Abstract
Strength training is an aspect of gait rehabilitation, which complements balance control and weight-bearing training. However, conventional strength training does not show positive gait outcomes, due to lack of task specificity. Therefore, the aims of this study were to investigate the effects of a resistance force applied at the center of mass (CoM) and to investigate whether this exercise can be used for effective task-specific gait training. Using a novel robotic walker, a consistent resistive force was applied to the CoM of subjects in the posterior direction. Eleven healthy subjects were instructed to walk under five walking conditions with increasing forces, based on each subject's body weight (BW), at 0, 2.5, 5, 7.5, and 10% BW. Joint kinematics and mean amplitude and frequency of electromyography signals from nine major muscles were measured. The application of resistance resulted in significantly increased flexion angles at ankle, knee, and hip joints. A large amount of motor unit activation with lower firing rates was found at knee and hip joints, indicating that this type of resistance training can improve muscular strength and endurance in a task-specific manner. The long-term effects of the resistance training on neurologically challenged patients will be investigated in the future.
Collapse
Affiliation(s)
- Kyung-Ryoul Mun
- Image Media Research Center, Korea Institute of Science and Technology, Seoul, 136791, Republic of Korea
| | - Brandon Bao Sheng Yeo
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| | - Zhao Guo
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| | - Soon Cheol Chung
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| | - Haoyong Yu
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore.
| |
Collapse
|
5
|
Age-Associated Changes in the Spectral and Statistical Parameters of Surface Electromyogram of Tibialis Anterior. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7159701. [PMID: 27610379 PMCID: PMC5005778 DOI: 10.1155/2016/7159701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 01/10/2023]
Abstract
Age-related neuromuscular change of Tibialis Anterior (TA) is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD) as suitable features to identify age-associated changes in the surface electromyogram (sEMG). Eighteen younger (20–30 years) and 18 older (60–85 years) cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG's maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes.
Collapse
|