1
|
Duan Y, Ling J, Feng Z, Ye T, Sun T, Zhu Y. A Survey of Needle Steering Approaches in Minimally Invasive Surgery. Ann Biomed Eng 2024; 52:1492-1517. [PMID: 38530535 DOI: 10.1007/s10439-024-03494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
In virtue of a curved insertion path inside tissues, needle steering techniques have revealed the potential with the assistance of medical robots and images. The superiority of this technique has been preliminarily verified with several maneuvers: target realignment, obstacle circumvention, and multi-target access. However, the momentum of needle steering approaches in the past decade leads to an open question-"How to choose an applicable needle steering approach for a specific clinical application?" This survey discusses this question in terms of design choices and clinical considerations, respectively. In view of design choices, this survey proposes a hierarchical taxonomy of current needle steering approaches. Needle steering approaches of different manipulations and designs are classified to systematically review the design choices and their influences on clinical treatments. In view of clinical consideration, this survey discusses the steerability and acceptability of the current needle steering approaches. On this basis, the pros and cons of the current needle steering approaches are weighed and their suitable applications are summarized. At last, this survey concluded with an outlook of the needle steering techniques, including the potential clinical applications and future developments in mechanical design.
Collapse
Affiliation(s)
- Yuzhou Duan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jie Ling
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhao Feng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Tingting Ye
- Industrial and Systems Engineering Department, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Tairen Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuchuan Zhu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
2
|
Sánchez-Margallo JA, Tas L, Moelker A, van den Dobbelsteen JJ, Sánchez-Margallo FM, Langø T, van Walsum T, van de Berg NJ. Block-matching-based registration to evaluate ultrasound visibility of percutaneous needles in liver-mimicking phantoms. Med Phys 2021; 48:7602-7612. [PMID: 34665885 PMCID: PMC9298012 DOI: 10.1002/mp.15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To present a novel methodical approach to compare visibility of percutaneous needles in ultrasound images. Methods A motor‐driven rotation platform was used to gradually change the needle angle while capturing image data. Data analysis was automated using block‐matching‐based registration, with a tracking and refinement step. Every 25 frames, a Hough transform was used to improve needle alignments after large rotations. The method was demonstrated by comparing three commercial needles (14G radiofrequency ablation, RFA; 18G Trocar; 22G Chiba) and six prototype needles with different sizes, materials, and surface conditions (polished, sand‐blasted, and kerfed), within polyvinyl alcohol phantom tissue and ex vivo bovine liver models. For each needle and angle, a contrast‐to‐noise ratio (CNR) was determined to quantify visibility. CNR values are presented as a function of needle type and insertion angle. In addition, the normalized area under the (CNR‐angle) curve was used as a summary metric to compare needles. Results In phantom tissue, the first kerfed needle design had the largest normalized area of visibility and the polished 1 mm diameter stainless steel needle the smallest (0.704 ± 0.199 vs. 0.154 ± 0.027, p < 0.01). In the ex vivo model, the second kerfed needle design had the largest normalized area of visibility, and the sand‐blasted stainless steel needle the smallest (0.470 ± 0.190 vs. 0.127 ± 0.047, p < 0.001). As expected, the analysis showed needle visibility peaks at orthogonal insertion angles. For acute or obtuse angles, needle visibility was similar or reduced. Overall, the variability in needle visibility was considerably higher in livers. Conclusion The best overall visibility was found with kerfed needles and the commercial RFA needle. The presented methodical approach to quantify ultrasound visibility allows comparisons of (echogenic) needles, as well as other technological innovations aiming to improve ultrasound visibility of percutaneous needles, such as coatings, material treatments, and beam steering approaches.
Collapse
Affiliation(s)
- Juan A Sánchez-Margallo
- Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Lisette Tas
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Adriaan Moelker
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Theo van Walsum
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Nick J van de Berg
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Biologically Inspired Surgical Needle Steering: Technology and Application of the Programmable Bevel-Tip Needle. Biomimetics (Basel) 2020; 5:biomimetics5040068. [PMID: 33339448 PMCID: PMC7768529 DOI: 10.3390/biomimetics5040068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 11/18/2022] Open
Abstract
Percutaneous interventions via minimally invasive surgical systems can provide patients with better outcomes and faster recovery times than open surgeries. Accurate needle insertions are vital for successful procedures, and actively steered needles can increase system precision. Here, we describe how biology inspired the design of a novel Programmable Bevel-Tip Needle (PBN), mimicking the mechanics and control methods of certain insects ovipositors. Following an overview of our unique research and development journey, this paper explores our latest, biomimetic control of PBNs and its application to neurosurgery, which we validate within a simulated environment. Three modalities are presented, namely a Direct Push Controller, a Cyclic Actuation Controller, and a newly developed Hybrid Controller, which have been integrated into a surgical visual interface. The results of open loop, expert human-in-the-loop and a non-expert user study show that the Hybrid Controller is the best choice when considering system performance and the ability to lesson strain on the surrounding tissue which we hypothesis will result in less damage along the insertion tract. Over representative trajectories for neurosurgery using a Hybrid Controller, an expert user could reach a target along a 3D path with an accuracy of 0.70±0.69 mm, and non-expert users 0.97±0.72 mm, both clinically viable results and equivalent or better than the state-of-the-art actively steered needles over 3D paths. This paper showcases a successful example of a biologically inspired, actively steered needle, which has been integrated within a clinical interface and designed for seamless integration into the neurosurgical workflow.
Collapse
|
4
|
Tip Estimation Method in Phantoms for Curved Needle Using 2D Transverse Ultrasound Images. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flexible needles have been widely used in minimally invasive surgeries, especially in percutaneous interventions. Among the interventions, tip position of the curved needle is very important, since it directly affects the success of the surgeries. In this paper, we present a method to estimate the tip position of a long-curved needle by using 2D transverse ultrasound images from a robotic ultrasound system. Ultrasound is first used to detect the cross section of long-flexible needle. A new imaging approach is proposed based on the selection of numbers of pixels with a higher gray level, which can directly remove the lower gray level to highlight the needle. After that, the needle shape tracking method is proposed by combining the image processing with the Kalman filter by using 3D needle positions, which develop a robust needle tracking procedure from 1 mm to 8 mm scan intervals. Shape reconstruction is then achieved using the curve fitting method. Finally, the needle tip position is estimated based on the curve fitting result. Experimental results showed that the estimation error of tip position is less than 1 mm within 4 mm scan intervals. The advantage of the proposed method is that the shape and tip position can be estimated through scanning the needle’s cross sections at intervals along the direction of needle insertion without detecting the tip.
Collapse
|
5
|
van de Berg NJ, Sánchez-Margallo JA, van Dijke AP, Langø T, van den Dobbelsteen JJ. A Methodical Quantification of Needle Visibility and Echogenicity in Ultrasound Images. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:998-1009. [PMID: 30655111 DOI: 10.1016/j.ultrasmedbio.2018.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/31/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
During ultrasound-guided percutaneous interventions, needle localization can be a challenge. To increase needle visibility, enhancements of both the imaging methods and the needle surface properties have been investigated. However, a methodical approach to compare potential solutions is currently unavailable. The work described here involves automated image acquisition, analysis and reporting techniques to collect large amounts of data efficiently, delineate relevant factors and communicate effects. Data processing included filtering, line fitting and image intensity analysis steps. Foreground and background image samples were used to compute a contrast-to-noise ratio or a signal ratio. The approach was evaluated in a comparative study of commercially available and custom-made needles. Varied parameters included needle material, diameter and surface roughness. The shafts with kerfed patterns and the trocar and chiba tips performed best. The approach enabled an intuitive polar depiction of needle visibility in ultrasound images for a large range of insertion angles.
Collapse
Affiliation(s)
- Nick J van de Berg
- Department of BioMechanical Engineering Delft University of Technology, Delft, The Netherlands.
| | - Juan A Sánchez-Margallo
- Medical Technology, SINTEF, Norway; Computer Systems and Telematics, University of Extremadura, Extremadura, Spain
| | - Arjan P van Dijke
- Department of BioMechanical Engineering Delft University of Technology, Delft, The Netherlands
| | | | | |
Collapse
|
6
|
Khadem M, Rossa C, Usmani N, Sloboda RS, Tavakoli M. Robotic-Assisted Needle Steering Around Anatomical Obstacles Using Notched Steerable Needles. IEEE J Biomed Health Inform 2018; 22:1917-1928. [DOI: 10.1109/jbhi.2017.2780192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
McNabb E, Wong R, Noseworthy MD. Resolution and registration in dual-plane co-RASOR MR. Phys Med Biol 2018; 63:215005. [PMID: 30260799 DOI: 10.1088/1361-6560/aae4d5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance imaging (MRI) has superior soft tissue contrast and lower interobserver variability compared to computed tomography and advances in equipment and pseudo-CT estimation have allowed for MR-only radiation therapy planning. Dedicated MR sequences have been used to localize paramagnetic structures with positive contrast, and most implanted seeds are gold fiducial markers (GFMs). We used a fast, dual-plane co-RASOR sequence to localize implanted GFMs with positive contrast in phantom and tissue to assess their resolution and registration accuracy of registration to CT. Off-resonant reconstructions of co-RASOR images were able to resolve GFMs down to 5 mm apart at 12 cm FOV. No systematic biases were observed by comparing registration of co-RASOR and bSSFP to CT images in an MR-compatible Lego phantom with a set of highly visible known points. The standard deviations of the MR to CT distance errors were <0.5 mm in all directions. We separated the component due to registration by comparing the two MR sequences, which had a maximum standard deviation of 0.36 mm in the SI-direction. Registration using the positive contrast points in a porcine sample phantom showed increased errors, but co-RASOR still performs acceptably with a target registration error of <0.75 mm. The dual-plane co-RASOR sequence could then be used for both registration and image tracking when performing MR-only radiation therapy planning.
Collapse
Affiliation(s)
- Evan McNabb
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
8
|
The influence of tip shape on bending force during needle insertion. Sci Rep 2017; 7:40477. [PMID: 28074939 PMCID: PMC5225462 DOI: 10.1038/srep40477] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/06/2016] [Indexed: 11/09/2022] Open
Abstract
Steering of needles involves the planning and timely modifying of instrument-tissue force interactions to allow for controlled deflections during the insertion in tissue. In this work, the effect of tip shape on these forces was studied using 10 mm diameter needle tips. Six different tips were selected, including beveled and conical versions, with or without pre-bend or pre-curve. A six-degree-of-freedom force/torque sensor measured the loads during indentations in tissue simulants. The increased insertion (axial) and bending (radial) forces with insertion depth - the force-displacement slopes - were analyzed. Results showed that the ratio between radial and axial forces was not always proportional. This means that the tip load does not have a constant orientation, as is often assumed in mechanics-based steering models. For all tip types, the tip-load assumed a more radial orientation with increased axial load. This effect was larger for straight tips than for pre-bent or pre-curved tips. In addition, the force-displacement slopes were consistently higher for (1) increased tip angles, and for (2) beveled tips compared to conical tips. Needles with a bent or curved tip allow for an increased bending force and a decreased variability of the tip load vector orientation.
Collapse
|
9
|
van de Berg NJ, Dankelman J, van den Dobbelsteen JJ. Endpoint Accuracy in Manual Control of a Steerable Needle. J Vasc Interv Radiol 2016; 28:276-283.e2. [PMID: 27720573 DOI: 10.1016/j.jvir.2016.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To study the ability of a human operator to manually correct for errors in the needle insertion path without partial withdrawal of the needle by means of an active, tip-articulated steerable needle. MATERIALS AND METHODS The needle is composed of a 1.32-mm outer-diameter cannula, with a flexure joint near the tip, and a retractable stylet. The bending stiffness of the needle resembles that of a 20-gauge hypodermic needle. The needle functionality was evaluated in manual insertions by steering to predefined targets and a lateral displacement of 20 mm from the straight insertion line. Steering tasks were conducted in 5 directions and 2 tissue simulants under image guidance from a camera. The repeatability in instrument actuations was assessed during 100 mm deep automated insertions with a linear motor. In addition to tip position, tip angles were tracked during the insertions. RESULTS The targeting error (mean absolute error ± standard deviation) during manual steering to 5 different targets in stiff tissue was 0.5 mm ± 1.1. This variability in manual tip placement (1.1 mm) was less than the variability among automated insertions (1.4 mm) in the same tissue type. An increased tissue stiffness resulted in an increased lateral tip displacement. The tip angle was directly controlled by the user interface, and remained unaffected by the tissue stiffness. CONCLUSIONS This study demonstrates the ability to manually steer needles to predefined target locations under image guidance.
Collapse
Affiliation(s)
- Nick J van de Berg
- Department of Biomechanical Engineering, Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Mekelweg 2, Delft 2628CD, The Netherlands.
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Mekelweg 2, Delft 2628CD, The Netherlands
| | - John J van den Dobbelsteen
- Department of Biomechanical Engineering, Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Mekelweg 2, Delft 2628CD, The Netherlands
| |
Collapse
|