1
|
Holzberger F, Muhr M, Wohlmuth B. A comprehensive numerical approach to coil placement in cerebral aneurysms: mathematical modeling and in silico occlusion classification. Biomech Model Mechanobiol 2024; 23:2063-2089. [PMID: 39162857 PMCID: PMC11554728 DOI: 10.1007/s10237-024-01882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
Endovascular coil embolization is one of the primary treatment techniques for cerebral aneurysms. Although it is a well-established and minimally invasive method, it bears the risk of suboptimal coil placement which can lead to incomplete occlusion of the aneurysm possibly causing recurrence. One of the key features of coils is that they have an imprinted natural shape supporting the fixation within the aneurysm. For the spatial discretization, our mathematical coil model is based on the discrete elastic rod model which results in a dimension-reduced 1D system of differential equations. We include bending and twisting responses to account for the coils natural curvature and allow for the placement of several coils having different material parameters. Collisions between coil segments and the aneurysm wall are handled by an efficient contact algorithm that relies on an octree based collision detection. In time, we use a standard symplectic semi-implicit Euler time stepping method. Our model can be easily incorporated into blood flow simulations of embolized aneurysms. In order to differentiate optimal from suboptimal placements, we employ a suitable in silico Raymond-Roy-type occlusion classification and measure the local packing density in the aneurysm at its neck, wall region and core. We investigate the impact of uncertainties in the coil parameters and embolization procedure. To this end, we vary the position and the angle of insertion of the micro-catheter, and approximate the local packing density distributions by evaluating sample statistics.
Collapse
Affiliation(s)
- Fabian Holzberger
- Department of Mathematics, Technical University of Munich, Boltzmannstr. 3/III, 85748, Garching b. München, Germany.
| | - Markus Muhr
- Department of Mathematics, Technical University of Munich, Boltzmannstr. 3/III, 85748, Garching b. München, Germany
| | - Barbara Wohlmuth
- Department of Mathematics, Technical University of Munich, Boltzmannstr. 3/III, 85748, Garching b. München, Germany
| |
Collapse
|
2
|
Panneerselvam NK, Sudhir BJ, Kannath SK, Patnaik BSV. Influence of framing coil orientation and its shape on the hemodynamics of a basilar aneurysm model. Med Biol Eng Comput 2024; 62:3411-3432. [PMID: 38856881 DOI: 10.1007/s11517-024-03146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Aneurysms are bulges of an artery, which require clinical management solutions. Due to the inherent advantages, endovascular coil filling is emerging as the treatment of choice for intracranial aneurysms (IAs). However, after successful treatment of coil embolization, there is a serious risk of recurrence. It is well known that optimal packing density will enhance treatment outcomes. The main objective of endovascular coil embolization is to achieve flow stasis by enabling significant reduction in intra-aneurysmal flow and facilitate thrombus formation. The present study numerically investigates the effect of framing coil orientation on intra-aneurysmal hemodynamics. For the purpose of analysis, actual shape of the embolic coil is used, instead of simplified ideal coil shape. Typically used details of the framing coil are resolved for the analysis. However, region above the framing coil is assumed to be filled with a porous medium. Present simulations have shown that orientation of the framing coil loop (FCL) greatly influences the intra-aneurysmal hemodynamics. The FCLs which were placed parallel to the outlets of basilar tip aneurysm (Coil A) were found to reduce intra-aneurysmal flow velocity that facilitates thrombus formation. Involving the coil for the region is modeled using a porous medium model with a packing density of 20 % . The simulations indicate that the framing coil loop (FCL) has a significant influence on the overall outcome.
Collapse
Affiliation(s)
- Nisanth Kumar Panneerselvam
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - B J Sudhir
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| | - Santhosh K Kannath
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - B S V Patnaik
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India.
| |
Collapse
|
3
|
Bass DI, Marsh LMM, Fillingham P, Lim D, Chivukula VK, Kim LJ, Aliseda A, Levitt MR. Modeling the Mechanical Microenvironment of Coiled Cerebral Aneurysms. J Biomech Eng 2023; 145:041005. [PMID: 36193892 PMCID: PMC9791668 DOI: 10.1115/1.4055857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/09/2022] [Indexed: 12/30/2022]
Abstract
Successful occlusion of cerebral aneurysms using coil embolization is contingent upon stable thrombus formation, and the quality of the thrombus depends upon the biomechanical environment. The goal of this study was to investigate how coil embolization alters the mechanical micro-environment within the aneurysm dome. Inertialess particles were injected in three-dimensional, computational simulations of flow inside patient aneurysms using patient-specific boundary conditions. Coil embolization was simulated as a homogenous porous medium of known permeability and inertial constant. Lagrangian particle tracking was used to calculate the residence time and shear stress history for particles in the flow before and after treatment. The percentage of particles entering the aneurysm dome correlated with the neck surface area before and after treatment (pretreatment: R2 = 0.831, P < 0.001; post-treatment: R2 = 0.638, P < 0.001). There was an inverse relationship between the change in particles entering the dome and coil packing density (R2 = 0.600, P < 0.001). Following treatment, the particles with the longest residence times tended to remain within the dome even longer while accumulating lower shear stress. A significant correlation was observed between the treatment effect on residence time and the ratio of the neck surface area to porosity (R2 = 0.390, P = 0.007). The results of this study suggest that coil embolization triggers clot formation within the aneurysm dome via a low shear stress-mediated pathway. This hypothesis links independently observed findings from several benchtop and clinical studies, furthering our understanding of this treatment strategy.
Collapse
Affiliation(s)
- David I. Bass
- Department of Neurological Surgery, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104
| | - Laurel M. M. Marsh
- Department of Mechanical Engineering, University of Washington, 3900 East Stevens Way NE, Box 352600, Seattle, WA 98195
| | - Patrick Fillingham
- Department of Neurological Surgery, Stroke & Applied Neuroscience Center, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104
| | - Do Lim
- Department of Neurological Surgery, Stroke & Applied Neuroscience Center, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104
| | - V. Keshav Chivukula
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Building, Melbourne, FL 32901
| | - Louis J. Kim
- Department of Neurological Surgery, Stroke & Applied Neuroscience Center, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104; Department of Radiology, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104
| | - Alberto Aliseda
- Department of Mechanical Engineering, Stroke & Applied Neuroscience Center, University of Washington, 3900 East Stevens Way NE, Box 352600, Seattle, WA 98195; Department of Neurological Surgery, Stroke & Applied Neuroscience Center, University of Washington, 3900 East Stevens Way NE, Box 352600, Seattle, WA 98195
| | - Michael R. Levitt
- Department of Neurological Surgery, Stroke & Applied Neuroscience Center, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104; Department of Radiology, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104; Department of Mechanical Engineering, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104
| |
Collapse
|
4
|
Tailored Sac Embolization During EVAR for Preventing Persistent Type II Endoleak. Ann Vasc Surg 2021; 76:293-301. [PMID: 33823259 DOI: 10.1016/j.avsg.2021.01.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Persistent type II endoleaks (ELIIp) occur in 8-23% of patients submitted to endovascular aneurysm repair (EVAR) and may lead to aneurysm progression and rupture. Intraoperative embolization of the abdominal aortic aneurysm (AAA) sac is effective to prevent their occurrence, however a method to achieve complete sac thrombosis has not been standardized yet. Aim of our study was to identify factors associated with prevention of ELIIp after intraoperative embolization, in order to optimize technical details. METHODS Patients at high risk for ELIIp, who underwent EVAR with AAA - sac coil embolization were prospectively collected into a dedicated database from January 2012 to March 2015. The endoluminal residual sac volume (ERV), not occupied by the endograft [ERV= AAA total volume (TV) - (AAA-thrombus volume (THV) + endograft volume (EgV)] was calculated on preoperative computed tomography and the concentration of coils implanted (CCoil= n coils implanted/ERV) for each patient was evaluated. AAA volumetric evaluation was conducted by dedicated vessels analysis software (3Mensio). ELIIp presence was evaluated by contrast-enhanced ultrasound at 6 and 12-month. Patients with ELIIp at 12 months (Group 1) were clustered and compared to patients without ELIIp (Group 2), in order to evaluate the incidence of ELIIp in patients undergone to preventive AAA-sac embolization, and identify the predictors of ELIIp prevention. Morphological potential risk factors for ELIIp such as TV, THV, VR% and EgV were also considered in all patients. Statistical correlation was assessed by Fisher Exact Test. RESULTS Among 326 patients undergone to standard EVAR, 61 (19% - M: 96.7%, median age: 72 [IQR: 8] years, median AAA diameter: 57 [IQR: 7] mm) were considered at high risk for ELIIp and were submitted to coil embolization. The median AAA total volume (TV) and median ERV were 156 (IQR: 59) cc and 46 (IQR: 26) cc, respectively. The median number and concentration of coils (IMWCE-38-16-45 Cook M-Ray) positioned in AAA-sac were 5 (IQR: 1) coils and 0.17 coil/cm3 (range 0.02-1.20). Among this high-risk population, the incidence of ELIIp was 29.5% and 23% at 6 and 12-month, respectively. Fourteen patients (23%) were clustered in Group1 and 47 (77%) in Group 2. Both groups were homogeneous for clinical characteristics and preoperative morphological risk factors. There were no differences in the preoperative median TV, AAA-thrombus volume (THV), %VR, EgV and number of implanted coils between Group1 and Group2. Patients in Group1 had a significantly higher ERV (59 [IQR: 13] cm3 vs. 42 [IQR: 27] cm3, P = 0.002) and lower CCoil (0.09 [IQR: 0.03] vs. 0.18 [IQR: 0.21], P = 0.006) than patients of Group2. ELIIp was significantly related to the presence of ERV > 49 cm3 (86 % vs. 42 %, Group1 and Group2 respectively, P = 0.006) and CCoil < 0.17coil/ cm3 (100% vs. 68%, Group1 e Group2 respectively, P = 0.014). CONCLUSION According with our results, Coil concentration and endoluminal residual volume can affect the efficacy of the AAA - sac embolization in the prevention of ELIIp, moreover CCoil ≥0.17coil/ cm3 maight be considered to determine the tailored number of coils.
Collapse
|
5
|
Yankova G, Tur D, Parshin D, Cherevko A, Akulov A. Cerebral arterial architectonics and CFD simulation in mice with type 1 diabetes mellitus of different duration. Sci Rep 2021; 11:3969. [PMID: 33597584 PMCID: PMC7889636 DOI: 10.1038/s41598-021-83484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 11/09/2022] Open
Abstract
Type 1 diabetes is a chronic autoimmune disease that affects tens of millions of people. Diabetes mellitus is one of the strongest factors in the development of cerebrovascular diseases. In this study we used NOD.CB17 Prkdcscid mice and the pharmacological model of type 1 diabetes mellitus of different duration to study changes in the cerebral vasculature. We used two combined approaches using magnetic resonance angiography both steady and transient CFD blood flow modeling. We identified the influence of type 1 diabetes on the architectonics and hemodynamics of the large blood vessels of the brain as the disease progresses. For the first time, we detected a statistically significant change in angioarchitectonics (the angles between the vessels of the circle of Willis, cross-sections areas of vessels) and hemodynamic (maximum blood flow rate, hydraulic resistance) in animals with diabetes duration of 2 months, that is manifested by the development of asymmetry of cerebral blood flow. The result shows the negative effect of diabetes on cerebral circulation as well as the practicability of CFD modeling. This may be of extensive interest, in pharmacological and preclinical studies.
Collapse
Affiliation(s)
- Galina Yankova
- Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Darya Tur
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Daniil Parshin
- Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Cherevko
- Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey Akulov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Advancement in the haemodynamic study of intracranial aneurysms by computational fluid dynamics. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Shimano K, Serigano S, Ikeda N, Yuchi T, Shiratori S, Nagano H. Understanding of boundary conditions imposed at multiple outlets in computational haemodynamic analysis of cerebral aneurysm. ACTA ACUST UNITED AC 2019. [DOI: 10.17106/jbr.33.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Kenjiro Shimano
- Department of Mechanical Systems Engineering, Faculty of Engineering, Tokyo City University
| | - Shota Serigano
- Graduate School of Integrative Science and Engineering, Tokyo City University
| | - Naoki Ikeda
- Department of Mechanical Systems Engineering, Faculty of Engineering, Tokyo City University
| | - Tomoki Yuchi
- Department of Mechanical Systems Engineering, Faculty of Engineering, Tokyo City University
| | - Suguru Shiratori
- Department of Mechanical Systems Engineering, Faculty of Engineering, Tokyo City University
| | - Hideaki Nagano
- Department of Mechanical Systems Engineering, Faculty of Engineering, Tokyo City University
| |
Collapse
|
8
|
Horn JD, Maitland DJ, Hartman J, Ortega JM. A computational thrombus formation model: application to an idealized two-dimensional aneurysm treated with bare metal coils. Biomech Model Mechanobiol 2018; 17:1821-1838. [DOI: 10.1007/s10237-018-1059-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
|
9
|
Otani T, Shindo T, Ii S, Hirata M, Wada S. Effect of Local Coil Density on Blood Flow Stagnation in Densely Coiled Cerebral Aneurysms: A Computational Study Using a Cartesian Grid Method. J Biomech Eng 2018; 140:2671737. [DOI: 10.1115/1.4039150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 11/08/2022]
Abstract
Aneurysm recurrence is the most critical concern following coil embolization of a cerebral aneurysm. Adequate packing density (PD) and coil uniformity are believed necessary to achieve sufficient flow stagnation, which decreases the risk of aneurysm recurrence. The effect of coil distribution on the extent of flow stagnation, however, especially in cases of dense packing (high PD), has received less attention. Thus, the cause of aneurysm recurrence despite dense packing is still an open question. The primary aim of this study is to evaluate the effect of local coil density on the extent of blood flow stagnation in densely coiled aneurysms. For this purpose, we developed a robust computational framework to determine blood flow using a Cartesian grid method, by which the complex fluid pathways in coiled aneurysms could be flexibly treated using an implicit function. This tool allowed us to conduct blood flow analyses in two patient-specific geometries with 50 coil distribution patterns in each aneurysm at clinically adequate PD. The results demonstrated that dense packing in the aneurysm may not necessarily block completely the inflow into the aneurysm and local flow that formed in the neck region, whose strength was inversely related to this local PD. This finding suggests that local coil density in the neck region still plays an important role in disturbing the remaining local flow, which possibly prevents thrombus formation in a whole aneurysm sac, increasing the risk of aneurysm regrowth and subsequent recurrence.
Collapse
Affiliation(s)
- Tomohiro Otani
- Mem. ASME Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka-shi 560-8531, Osaka, Japan e-mail:
| | - Takuya Shindo
- Department of Systems Science, School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka-shi 560-8531, Osaka, Japan e-mail:
| | - Satoshi Ii
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka-shi 560-8531, Osaka, Japan e-mail:
| | - Masayuki Hirata
- Department of Neurosurgery, Graduate School of Medicine and Global Center for Medical Engineering and Informatics (MEI Center), Osaka University, 2-2 Yamadaoka, Suita-shi 560-0871, Osaka, Japan e-mail:
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka-shi 560-8531, Osaka, Japan e-mail:
| |
Collapse
|
10
|
Ogawa Y, Nakahara T, Nishida Y, Kobayashi C, Hirata T, Nagano H, Shiratori S, Shimano K. In vitro measurement of platelet adhesion to intact endothelial cells under low shear conditions. Biorheology 2018; 54:51-65. [PMID: 29355112 DOI: 10.3233/bir-17139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prediction of thrombus formation at intact arterial walls under low shear flow conditions is clinically important particularly for better prognoses of embolisation in cerebral aneurysms. Although a new mathematical model for this purpose is necessary, little quantitative information has been known about platelet adhesion to intact endothelial cells. OBJECTIVE The objective of this study is to measure the number of platelets adhering to intact endothelial cells with a focus upon the influence of the shear rate. METHODS Endothelial cells disseminated in μ-slides were exposed to swine whole blood at different shear rates. Adenosine diphosphate (ADP) was used as an agonist. Adherent platelets were counted by means of scanning electron microscopy. RESULTS At an ADP concentration of 1 µM, 20.8 ± 3.1 platelets per 900 µm2 were observed after 30-minute perfusion at a shear rate of 0.8 s-1 whereas only 3.0 ± 1.4 per 900 µm2 at 16.8 s-1. CONCLUSIONS The number of adherent platelets is determined by a balance between the shear and the degree of stimulation by the agonist. At an ADP concentration of 1 µM, a limit to the shear rate at which platelets can adhere to intact endothelial cells is considered to be slightly higher than 16.8 s-1.
Collapse
Affiliation(s)
- Yuki Ogawa
- Department of Mechanical Systems Engineering, Tokyo City University, Tokyo, Japan
| | - Takuma Nakahara
- Department of Mechanical Systems Engineering, Tokyo City University, Tokyo, Japan
| | - Yuma Nishida
- Department of Mechanical Systems Engineering, Tokyo City University, Tokyo, Japan
| | - Chihiro Kobayashi
- Department of Medical Engineering, Tokyo City University, Tokyo, Japan
| | - Takamichi Hirata
- Department of Medical Engineering, Tokyo City University, Tokyo, Japan
| | - Hideaki Nagano
- Department of Mechanical Systems Engineering, Tokyo City University, Tokyo, Japan
| | - Suguru Shiratori
- Department of Mechanical Systems Engineering, Tokyo City University, Tokyo, Japan
| | - Kenjiro Shimano
- Department of Mechanical Systems Engineering, Tokyo City University, Tokyo, Japan
| |
Collapse
|
11
|
Sadasivan C, Swartwout E, Kappel AD, Woo HH, Fiorella DJ, Lieber BB. In vitro measurement of the permeability of endovascular coils deployed in cerebral aneurysms. J Neurointerv Surg 2018; 10:896-900. [PMID: 29298858 DOI: 10.1136/neurintsurg-2017-013481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND PURPOSE Aneurysm recurrence is the primary limitation of endovascular coiling treatment for cerebral aneurysms. Coiling is currently quantified by a volumetric porosity measure called packing density (pd). Blood flow through a coil mass depends on the permeability of the coil mass, and not just its pd. The permeability of coil masses has not yet been quantified. Here we measure coil permeability with a traditional falling-head permeameter modified to incorporate idealized aneurysms. METHODS Silicone replicas of idealized aneurysms were manufactured with three different aneurysm diameters (4, 5, and 8 mm). Four different coil types (Codman Trufill Orbit, Covidien Axium, Microvention Microplex 10, and Penumbra 400) were deployed into the aneurysms with a target pd of 35%. Coiled replicas were installed on a falling-head permeameter setup and the time taken for a column of fluid above the aneurysm to drop a certain height was recorded. Permeability of the samples was calculated based on a simple modification of the traditional permeameter equation to incorporate a spherical aneurysm. RESULTS The targeted 35% pd was achieved for all samples (35%±1%, P=0.91). Coil permeabilities were significantly different from each other (P<0.001) at constant pd. Microplex 10 coils had the lowest permeability of all coil types. Data suggest a trend of increasing permeability with thicker coil wire diameter (not statistically significant). CONCLUSIONS A simple in vitro setup was developed to measure the permeabilities of coil masses based on traditional permeametry. Coil permeability should be considered when evaluating the hemodynamic efficacy of coiling instead of just packing density. Coils made of thicker wires may be more permeable, and thus less effective, than coils made from thinner wires. Whether aneurysm recurrence is affected by coil wire diameter or permeability needs to be confirmed with clinical trials.
Collapse
Affiliation(s)
- Chander Sadasivan
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Erica Swartwout
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Ari D Kappel
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Henry H Woo
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| | - David J Fiorella
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Barry B Lieber
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|