1
|
Brunskill N, Robinson J, Nocum D, Reed W. Exploring software navigation tools for liver tumour angiography: a scoping review. J Med Radiat Sci 2024; 71:261-268. [PMID: 38305074 PMCID: PMC11177025 DOI: 10.1002/jmrs.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION Liver cancer presents a growing global health concern, necessitating advanced approaches for intervention. This review investigates the use and effectiveness of software navigation in interventional radiology for liver tumour procedures. METHODS In accordance with Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines, a scoping review was conducted of the literature published between 2013 and 2023 sourcing articles through MEDLINE, Scopus, CINAHL and Embase. Eligible studies focused on liver cancer, utilised cone-beam computed tomography (CBCT), and employed software for intervention. Twenty-one articles were deemed eligible for data extraction and analysis. RESULTS Categorised by type, software applications yielded diverse benefits. Feeder detection software significantly enhanced vessel identification, reducing non-target embolisation by up to 43%. Motion correction software demonstrated a 20% enhancement in image quality, effectively mitigating breathing-induced motion artefacts. Liver perfusion software facilitated efficient tumour targeting while simultaneously reducing the occurrence of side effects. Needle guide software enabled precise radiofrequency ablation needle placement. Additionally, these software applications provided detailed anatomical simulations. Overall, software integration resulted in shorter procedures, reduced radiation exposure and decreased contrast media usage. CONCLUSION This scoping review highlights the innovative yet relatively underexplored role of software navigation for liver tumour procedures. The integration of software applications not only enhances procedural efficiency but also bolsters operator confidence, and contributes to improved patient outcomes. Despite the current lack of uniformity and standardisation, these software-driven advancements hold significant promise for transforming liver tumour interventions. To realise these benefits, further research is needed to explore the clinical impact and optimal utilisation of software navigation tools in interventional radiology.
Collapse
Affiliation(s)
- Nathan Brunskill
- San Radiology & Nuclear MedicineSydney Adventist HospitalWahroongaNew South WalesAustralia
| | - John Robinson
- Sydney School of Health Sciences, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| | - Don Nocum
- San Radiology & Nuclear MedicineSydney Adventist HospitalWahroongaNew South WalesAustralia
- Sydney School of Health Sciences, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| | - Warren Reed
- Sydney School of Health Sciences, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
2
|
Bomberna T, Vermijs S, Bonne L, Verslype C, Maleux G, Debbaut C. Spatiotemporal Analysis of Particle Spread to Assess the Hybrid Particle-Flow CFD Model of Radioembolization of HCC Tumors. IEEE Trans Biomed Eng 2024; 71:1219-1227. [PMID: 37938948 DOI: 10.1109/tbme.2023.3331085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Computational fluid dynamics (CFD) models can potentially aid in pre-operative planning of transarterial radioactive microparticle injections to treat hepatocellular carcinoma, but these models are computationally very costly. Previously, we introduced the hybrid particle-flow model as a surrogate, less costly modelling approach for the full particle distribution in truncated hepatic arterial trees. We hypothesized that higher cross-sectional particle spread could increase the match between flow and particle distribution. Here, we investigate whether truncation is still reliable for selective injection scenarios, and if spread is an important factor to consider for reliable truncation. METHODS Moderate and severe up- and downstream truncation for selective injection served as input for the hybrid model to compare downstream particle distributions with non-truncated models. In each simulation, particle cross-sectional spread was quantified for 5-6 planes. RESULTS Severe truncation gave maximum differences in particle distribution of ∼4-11% and ∼8-9% for down- and upstream truncation, respectively. For moderate truncation, these differences were only ∼1-1.5% and ∼0.5-2%. Considering all particles, spread increased downstream of the tip to 80-90%. However, spread was found to be much lower at specific timepoints, indicating high time-dependency. CONCLUSION Combining domain truncation with hybrid particle-flow modelling is an effective method to reduce computational complexity, but moderate truncation is more reliable than severe truncation. Time-dependent spread measures show where differences might arise between flow and particle modelling. SIGNIFICANCE The hybrid particle-flow model cuts down computational time significantly by reducing the physical domain, paving the way towards future clinical applications.
Collapse
|
3
|
McArdle N, Cournane S, McCavana J, Lucey J, León Vintró L. Development of a scatter correction technique for planar 99mTc-MAA imaging to improve accuracy in lung shunt fraction estimation. Phys Med 2022; 99:94-101. [PMID: 35665625 DOI: 10.1016/j.ejmp.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Prior to 90Y selective internal radiation therapy (SIRT) treatment, 99mTc-MAA scintigraphy imaging is used in the estimation of the lung shunt fraction (LSF). Planar imaging is recommended for determining a LSF ratio. However, the estimate may be affected by scatter contributions, attenuation and respiratory motion. The objective of this study was to correct for the effects of scatter in the LSF, towards the determination of a more accurate estimation method of LSF derived from planar scintigraphy imaging, which is recommended by international guidelines. METHODS The open access SIMIND Monte Carlo modelling software was used to estimate an optimum scatter window (SW) for scatter correction. The uncertainties associated with scatter and scatter contributions from the liver on the LSF were evaluated using an anthropomorphic thorax phantom and a virtual Vox-Man phantom. A brief retrospective examination of patient scans and tumour location investigated the impact that the inclusion of the simulated scatter corrections had on the LSF estimation. RESULTS The percentage overestimation of the manufacturer recommended method of LSF estimation was 192%. SW corrections improved the uncertainty to within 19% for the range of known LSFs. Similar findings were observed for our patient and tumour location studies. CONCLUSION The incorporated scatter corrections can significantly improve the accuracy of the LSF estimation, thereby providing a robust gamma camera, patient and tumour depth specific correction which is easily implementable. This is supported by Monte Carlo, phantom and preliminary patient studies.
Collapse
Affiliation(s)
- Niamh McArdle
- St. Vincent's University Hospital, Ireland; University College Dublin, Ireland.
| | - Seán Cournane
- St. Vincent's University Hospital, Ireland; University College Dublin, Ireland
| | | | | | | |
Collapse
|
4
|
Taebi A, Janibek N, Goldman R, Pillai R, Vu CT, Roncali E. The Impact of Injection Distance to Bifurcations on Yttrium-90 Distribution in Liver Cancer Radioembolization. J Vasc Interv Radiol 2022; 33:668-677.e1. [PMID: 35301128 PMCID: PMC9156550 DOI: 10.1016/j.jvir.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To model the effect of the injection location on the distribution of yttrium-90 (90Y) microspheres in the liver during radioembolization using computational simulation and to determine the potential effects of radial movements of the catheter tip. MATERIALS AND METHODS Numerical studies were conducted using images from a representative patient with hepatocellular carcinoma. The right hepatic artery (RHA) was segmented from contrast-enhanced cone-beam computed tomography scans. The blood flow was investigated in the trunk of the RHA using numerical simulations for 6 injection position scenarios at 2 sites located at a distance of approximately 5 and 20 mm upstream of the first bifurcation (RHA diameters of approximately 4.6 mm). The 90Y delivery to downstream vessels was calculated from the simulated hepatic artery hemodynamics. RESULTS Varying the injection location along the RHA and across the vessel cross-section resulted in different simulated microsphere distributions in the downstream vascular bed. When the catheter tip was 5 mm upstream of the bifurcation, 90Y distribution in the downstream branches varied by as much as 53% with a 1.5-mm radial movement of the tip. However, the catheter radial movement had a weaker effect on the microsphere distribution when the injection plane was farther from the first bifurcation (20 mm), with a maximum delivery variation of 9% to a downstream branch. CONCLUSIONS An injection location far from bifurcations is recommended to minimize the effect of radial movements of the catheter tip on the microsphere distribution.
Collapse
Affiliation(s)
- Amirtaha Taebi
- Department of Agricultural and Biological Engineering, Mississippi State University
| | - Nursultan Janibek
- Department of Mechanical and Aerospace Engineering, University of California Davis
| | - Roger Goldman
- Department of Radiology, University of California Davis
| | - Rex Pillai
- Department of Radiology, University of California Davis
| | | | - Emilie Roncali
- Department of Radiology, University of California Davis,Department of Biomedical Engineering, University of California Davis
| |
Collapse
|
5
|
Aramburu J, Antón R, Rodríguez-Fraile M, Sangro B, Bilbao JI. Computational Fluid Dynamics Modeling of Liver Radioembolization: A Review. Cardiovasc Intervent Radiol 2021; 45:12-20. [PMID: 34518913 PMCID: PMC8716346 DOI: 10.1007/s00270-021-02956-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Yttrium-90 radioembolization (RE) is a widely used transcatheter intraarterial therapy for patients with unresectable liver cancer. In the last decade, computer simulations of hepatic artery hemodynamics during RE have been performed with the aim of better understanding and improving the therapy. In this review, we introduce the concept of computational fluid dynamics (CFD) modeling with a clinical perspective and we review the CFD models used to study RE from the fluid mechanics point of view. Finally, we show what CFD simulations have taught us about the hemodynamics during RE, the current capabilities of CFD simulations of RE, and we suggest some future perspectives.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain.
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
| | - Macarena Rodríguez-Fraile
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Liver Unit, Clínica Universidad de Navarra and CIBEREHD, 31008, Pamplona, Spain
| | - José Ignacio Bilbao
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| |
Collapse
|
6
|
Delache O, Landreau A, Royer L, Petit A, Rousseau C, Rolland Y, Lalys F. A new software tool for planning interventional procedures in liver cancer. MINIM INVASIV THER 2021; 31:737-746. [PMID: 34355657 DOI: 10.1080/13645706.2021.1954953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Intra-arterial therapy is an effective way of performing chemotherapy or radiation therapy in patients with primary liver cancer (i.e. hepatocellular carcinoma). Although this minimally invasive approach is now an established treatment option, support tools for pre-operative planning and intra-operative assistance might be helpful. MATERIAL AND METHODS We developed an approach for semi-automatic segmentation of computed tomography angiography images of the main arterial branches (required for access path to the treatment site), automatic segmentation of the liver, arterial and venous tree, and interactive segmentation of the tumors (required for procedure-specific planning). This approach was then integrated into a liver-specific workflow within EndoSize® solution, a planning software for endovascular procedures. The main branches extraction approach was qualitatively evaluated inside the software, while the automatic segmentation methods were quantitatively assessed. RESULTS Main branches extraction provides a success rate of 85% (i.e. all arteries correctly extracted) in a dataset of 172 patients. On public databases, a mean DICE of 0.91, 0.47 and 0.92 was obtained for liver, venous and arterial trees segmentation, respectively. CONCLUSIONS This pipeline is suitable for directly accessing the treatment site, giving anatomic measurements, and visualizing the hepatic trees, liver, and surrounding arteries during the pre-operative planning. ABBREVIATIONS HCC: hepatocellular carcinoma; TACE: transarterial chemoembolization; SIRT: selective internal radiation therapy; CT: computed tomography; CTA: computed tomography angiography; AMS: superior mesenteric artery; LGA: left gastric artery; RHA: right hepatic artery; LHA: left hepatic artery; rbHA: right branch of the hepatic artery; lbHA: left branch of the hepatic artery; GDA: gastroduodenal artery; VOI: volume of interest; SD: standard deviation; MICCAI: medical image computing and computer assisted interventions; MR: magnetic resonance.
Collapse
Affiliation(s)
- Ondine Delache
- Department of Interventional Radiology, Centre Eugène Marquis, Rennes, France
| | | | | | | | - Chloé Rousseau
- Department of Clinical Pharmacology - CIC Inserm 1414, Centre Hospitalier Universitaire de Rennes - Hôpital Pontchaillou, Rennes, France
| | - Yan Rolland
- Department of Interventional Radiology, Centre Eugène Marquis, Rennes, France
| | | |
Collapse
|
7
|
Antón R, Antoñana J, Aramburu J, Ezponda A, Prieto E, Andonegui A, Ortega J, Vivas I, Sancho L, Sangro B, Bilbao JI, Rodríguez-Fraile M. A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization. Sci Rep 2021; 11:3895. [PMID: 33594143 PMCID: PMC7886872 DOI: 10.1038/s41598-021-83414-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool could be used for the optimization of the RE procedure. The hepatic artery three-dimensional (3D) hemodynamics and microsphere distribution during RE were modeled for six 90Y-loaded microsphere infusions in three patients with hepatocellular carcinoma using a commercially available computational fluid dynamics (CFD) software package. The model was built based on in vivo data acquired during the pretreatment stage. The results of the simulations were compared with the in vivo distribution assessed by 90Y PET/CT. Specifically, the microsphere distribution predicted was compared with the actual 90Y activity per liver segment with a commercially available 3D-voxel dosimetry software (PLANET Dose, DOSIsoft). The average difference between the CFD-based and the PET/CT-based activity distribution was 2.36 percentage points for Patient 1, 3.51 percentage points for Patient 2 and 2.02 percentage points for Patient 3. These results suggest that CFD simulations may help to predict 90Y-microsphere distribution after RE and could be used to optimize the RE procedure on a patient-specific basis.
Collapse
Affiliation(s)
- Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
| | - Javier Antoñana
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Ana Ezponda
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Elena Prieto
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Asier Andonegui
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Julio Ortega
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
- Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Isabel Vivas
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Lidia Sancho
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 28027, Madrid, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Hepatology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- CIBEREHD, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas, 28029, Madrid, Spain
| | - José Ignacio Bilbao
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Macarena Rodríguez-Fraile
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
8
|
Taebi A, Vu CT, Roncali E. Multiscale Computational Fluid Dynamics Modeling for Personalized Liver Cancer Radioembolization Dosimetry. J Biomech Eng 2021; 143:011002. [PMID: 32601676 PMCID: PMC7580665 DOI: 10.1115/1.4047656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Yttrium-90 (90Y) radioembolization is a minimally invasive procedure increasingly used for advanced liver cancer treatment. In this method, radioactive microspheres are injected into the hepatic arterial bloodstream to target, irradiate, and kill cancer cells. Accurate and precise treatment planning can lead to more efficient and safer treatment by delivering a higher radiation dose to the tumor while minimizing the exposure of the surrounding liver parenchyma. Treatment planning primarily relies on the estimated radiation dose delivered to tissue. However, current methods used to estimate the dose are based on simplified assumptions that make the dosimetry results unreliable. In this work, we present a computational model to predict the radiation dose from the 90Y activity in different liver segments to provide a more realistic and personalized dosimetry. Computational fluid dynamics (CFD) simulations were performed in a 3D hepatic arterial tree model segmented from cone-beam CT angiographic data obtained from a patient with hepatocellular carcinoma (HCC). The microsphere trajectories were predicted from the velocity field. 90Y dose distribution was then calculated from the volumetric distribution of the microspheres. Two injection locations were considered for the microsphere administration, a lobar and a selective injection. Results showed that 22% and 82% of the microspheres were delivered to the tumor, after each injection, respectively, and the combination of both injections ultimately delivered 49% of the total administered 90Y microspheres to the tumor. Results also illustrated the nonhomogeneous distribution of microspheres between liver segments, indicating the importance of developing patient-specific dosimetry methods for effective radioembolization treatment.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616
| | - Catherine T. Vu
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
9
|
Bomberna T, Koudehi GA, Claerebout C, Verslype C, Maleux G, Debbaut C. Transarterial drug delivery for liver cancer: numerical simulations and experimental validation of particle distribution in patient-specific livers. Expert Opin Drug Deliv 2020; 18:409-422. [PMID: 33210955 DOI: 10.1080/17425247.2021.1853702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Transarterial therapies are routinely used for the locoregional treatment of unresectable hepatocellular carcinoma (HCC). However, the impact of clinical parameters (i.e. injection location, particle size, particle density etc.) and patient-specific conditions (i.e. hepatic geometry, cancer burden) on the intrahepatic particle distribution (PD) after transarterial injection of embolizing microparticles is still unclear. Computational fluid dynamics (CFD) may help to better understand this impact.Methods: Using CFD, both the blood flow and microparticle mass transport were modeled throughout the 3D-reconstructed arterial vasculature of a patient-specific healthy and cirrhotic liver. An experimental feasibility study was performed to simulate the PD in a 3D-printed phantom of the cirrhotic arterial network.Results: Axial and in-plane injection locations were shown to be effective parameters to steer particles toward tumor tissue in both geometries. Increasing particle size or density made it more difficult for particles to exit the domain. As cancer burden increased, the catheter tip location mattered less. The in vitro study and numerical results confirmed that PD largely mimics flow distribution, but that significant differences are still possible.Conclusions: Our findings highlight that optimal parameter choice can lead to selective targeting of tumor tissue, but that targeting potential highly depends on patient-specific conditions.
Collapse
Affiliation(s)
- Tim Bomberna
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Ghazal Adeli Koudehi
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium
| | - Charlotte Claerebout
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium
| | - Chris Verslype
- Department of Clinical Digestive Oncology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Geert Maleux
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, Leuven, Belgium
| | - Charlotte Debbaut
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| |
Collapse
|
10
|
Ho H, Zhang E. Virtual Lobule Models Are the Key for Multiscale Biomechanical and Pharmacological Modeling for the Liver. Front Physiol 2020; 11:1061. [PMID: 32982791 PMCID: PMC7492636 DOI: 10.3389/fphys.2020.01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Harvey Ho
- Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - En Zhang
- Chongqing Institute for Food and Drug Control, Chongqing City, China
| |
Collapse
|
11
|
Taebi A, Pillai RM, S. Roudsari B, Vu CT, Roncali E. Computational Modeling of the Liver Arterial Blood Flow for Microsphere Therapy: Effect of Boundary Conditions. Bioengineering (Basel) 2020; 7:E64. [PMID: 32610459 PMCID: PMC7552664 DOI: 10.3390/bioengineering7030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Transarterial embolization is a minimally invasive treatment for advanced liver cancer using microspheres loaded with a chemotherapeutic drug or radioactive yttrium-90 (90Y) that are injected into the hepatic arterial tree through a catheter. For personalized treatment, the microsphere distribution in the liver should be optimized through the injection volume and location. Computational fluid dynamics (CFD) simulations of the blood flow in the hepatic artery can help estimate this distribution if carefully parameterized. An important aspect is the choice of the boundary conditions imposed at the inlet and outlets of the computational domain. In this study, the effect of boundary conditions on the hepatic arterial tree hemodynamics was investigated. The outlet boundary conditions were modeled with three-element Windkessel circuits, representative of the downstream vasculature resistance. Results demonstrated that the downstream vasculature resistance affected the hepatic artery hemodynamics such as the velocity field, the pressure field and the blood flow streamline trajectories. Moreover, the number of microspheres received by the tumor significantly changed (more than 10% of the total injected microspheres) with downstream resistance variations. These findings suggest that patient-specific boundary conditions should be used in order to achieve a more accurate drug distribution estimation with CFD in transarterial embolization treatment planning.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| | - Rex M. Pillai
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817, USA; (R.M.P.); (C.T.V.)
| | | | - Catherine T. Vu
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817, USA; (R.M.P.); (C.T.V.)
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| |
Collapse
|
12
|
Roncali E, Taebi A, Foster C, Vu CT. Personalized Dosimetry for Liver Cancer Y-90 Radioembolization Using Computational Fluid Dynamics and Monte Carlo Simulation. Ann Biomed Eng 2020; 48:1499-1510. [PMID: 32006268 PMCID: PMC7160004 DOI: 10.1007/s10439-020-02469-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
Yttrium-90 (Y-90) transarterial radioembolization uses radioactive microspheres injected into the hepatic artery to irradiate liver tumors internally. One of the major challenges is the lack of reliable dosimetry methods for dose prediction and dose verification. We present a patient-specific dosimetry approach for personalized treatment planning based on computational fluid dynamics (CFD) simulations of the microsphere transport combined with Y-90 physics modeling called CFDose. The ultimate goal is the development of a software to optimize the amount of activity and injection point for optimal tumor targeting. We present the proof-of-concept of a CFD dosimetry tool based on a patient's angiogram performed in standard-of-care planning. The hepatic arterial tree of the patient was segmented from the cone-beam CT (CBCT) to predict the microsphere transport using multiscale CFD modeling. To calculate the dose distribution, the predicted microsphere distribution was convolved with a Y-90 dose point kernel. Vessels as small as 0.45 mm were segmented, the microsphere distribution between the liver segments using flow analysis was predicted, the volumetric microsphere and resulting dose distribution in the liver volume were computed. The patient was imaged with positron emission tomography (PET) 2 h after radioembolization to evaluate the Y-90 distribution. The dose distribution was found to be consistent with the Y-90 PET images. These results demonstrate the feasibility of developing a complete framework for personalized Y-90 microsphere simulation and dosimetry using patient-specific input parameters.
Collapse
Affiliation(s)
- Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Amirtahà Taebi
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Cameron Foster
- Department of Radiology, UC Davis Medical Center, Sacramento, CA, 95817, USA
| | - Catherine Tram Vu
- Department of Radiology, UC Davis Medical Center, Sacramento, CA, 95817, USA
| |
Collapse
|