1
|
Dewaker V, Morya VK, Kim YH, Park ST, Kim HS, Koh YH. Revolutionizing oncology: the role of Artificial Intelligence (AI) as an antibody design, and optimization tools. Biomark Res 2025; 13:52. [PMID: 40155973 PMCID: PMC11954232 DOI: 10.1186/s40364-025-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
Antibodies play a crucial role in defending the human body against diseases, including life-threatening conditions like cancer. They mediate immune responses against foreign antigens and, in some cases, self-antigens. Over time, antibody-based technologies have evolved from monoclonal antibodies (mAbs) to chimeric antigen receptor T cells (CAR-T cells), significantly impacting biotechnology, diagnostics, and therapeutics. Although these advancements have enhanced therapeutic interventions, the integration of artificial intelligence (AI) is revolutionizing antibody design and optimization. This review explores recent AI advancements, including large language models (LLMs), diffusion models, and generative AI-based applications, which have transformed antibody discovery by accelerating de novo generation, enhancing immune response precision, and optimizing therapeutic efficacy. Through advanced data analysis, AI enables the prediction and design of antibody sequences, 3D structures, complementarity-determining regions (CDRs), paratopes, epitopes, and antigen-antibody interactions. These AI-powered innovations address longstanding challenges in antibody development, significantly improving speed, specificity, and accuracy in therapeutic design. By integrating computational advancements with biomedical applications, AI is driving next-generation cancer therapies, transforming precision medicine, and enhancing patient outcomes.
Collapse
Affiliation(s)
- Varun Dewaker
- Institute of New Frontier Research Team, Hallym University, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea
| | - Vivek Kumar Morya
- Department of Orthopedic Surgery, Hallym University Dongtan Sacred Hospital, Hwaseong-Si, 18450, Republic of Korea
| | - Yoo Hee Kim
- Department of Biomedical Gerontology, Ilsong Institute of Life Science, Hallym University, Seoul, 07247, Republic of Korea
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
- EIONCELL Inc, Chuncheon-Si, 24252, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea.
- Department of Internal Medicine, Division of Hemato-Oncology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, 07441, Republic of Korea.
- EIONCELL Inc, Chuncheon-Si, 24252, Republic of Korea.
| | - Young Ho Koh
- Department of Biomedical Gerontology, Ilsong Institute of Life Science, Hallym University, Seoul, 07247, Republic of Korea.
| |
Collapse
|
2
|
Zhou Y, Wang M, Zhao S, Yan Y. Machine Learning for Diagnosis of Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7167066. [PMID: 36458233 PMCID: PMC9708354 DOI: 10.1155/2022/7167066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 08/15/2023]
Abstract
Background Application of machine learning (ML) for identification of systemic lupus erythematosus (SLE) has been recently drawing increasing attention, while there is still lack of evidence-based support. Methods Systematic review and meta-analysis are conducted to evaluate its diagnostic accuracy and application prospect. PubMed, Embase, Cochrane Library, and Web of Science libraries are searched, in combination with manual searching and literature retrospection, for studies regarding machine learning for identifying SLE and neuropsychiatric systemic lupus erythematosus (NPSLE). Quality Assessment of Diagnostic Accuracy Studies (QUADA-2) is applied to assess the quality of included studies. Diagnostic accuracy of the SLE model and NPSLE model is assessed using the bivariate fixed-effect model, and the data are pooled. Summary receiver operator characteristic curve (SROC) is plotted, and area under the curve (AUC) is calculated. Results Eighteen (18) studies are included, in which ten (10) focused on SLE and eight (8) on NPSLE. The AUC of SLE identification is 0.95, the sensitivity is 0.90, the specificity is 0.89, the PLR is 8.4, the NLR is 0.12, and the DOR is 73. AUC of NPSLE identification is 0.89, the sensitivity is 0.83, the specificity is 0.83, the PLR is 5.0, the NLR is 0.20, and the DOR is 25. Conclusion Machine learning presented remarkable performance in identification of SLE and NPSLE. Based on the convenience for inclusion factor collection and non-invasiveness of detection, machine learning is expected to be widely applied in clinical practice to assist medical decision making.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Wang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shasha Zhao
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Yan
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|