1
|
Tang Y, Liao Z, Li F, Liu W, Gao J, Li Y, Hu Y, Cai H, Ma H, Yang Y, Yang J, Liao J, Liu N. A novel theranostic probe [ 111In]In-DO3A-NHS-nimotuzumab in glioma xenograft. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Indium-111 (111In) has an appropriate half-life (T
1/2 = 67 h) and energy characteristics for cancer diagnosis via γ-ray imaging and cancer therapy with Auger electrons. The aim of our study is to evaluate the potential of [111In]In-DO3A-NHS-nimotuzumab as a theranostic agent for radioimmunoimaging (RII) and radioimmunotherapy (RIT) against human glioma xenografts in mice. We explored the chelators DO3A-NHS and DOTA-p-SCN-Bz to optimize 111In radiolabeling efficiency of nimotuzumab. The radiopharmaceuticals were purified by PD-10 mini-column and their in vitro stabilities were assessed. We investigated the biodistribution of [111In]In-DO3A-NHS-nimotuzumab as it had relatively superior labeling efficiency and stability in vitro. We conducted SPECT imaging on mice bearing glioma (U87MG) xenografts, which were injected with ∼3.7 MBq of [111In]In-DO3A-NHS-nimotuzumab. The in vivo radiotherapeutic effects of [111In]In-DO3A-NHS-nimotuzumab was analyzed via injecting a single 37 MBq dose, 2 × 18 MBq doses, or 2 × 37 MBq doses into mice bearing U87MG xenografts. The control groups were administered either 30 μg nimotuzumab or saline. The radiochemical yields of [111In]In-DO3A-NHS-nimotuzumab and [111In]In-DOTA-p-SCN-Bz-nimotuzumab were > 85% and > 75%, respectively. [111In]In-DO3A-NHS-nimotuzumab had > 95% radiochemical purity and was more stable in vitro than [111In]In-DOTA-p-SCN-Bz-nimotuzumab. Biodistribution study demonstrated that [111In]In-DO3A-NHS-nimotuzumab was highly stable in vivo. SPECT imaging disclosed that [111In]In-DO3A-NHS-nimotuzumab had excellent targeted tumor uptake and retained in tumors for 24 and 72 h. All [111In]In-DO3A-NHS-nimotuzumab treatments substantially inhibited tumor growth over the controls. The 2 × 37 MBq treatment was particularly efficacious, and presented with survival time prolonged by ≤66 days. In contrast, the survival time of the control group was only 30 days. In our study, we developed an optimized synthesis protocol for radiopharmaceutical 111In-DO3A-NHS-nimotuzumab and demonstrated that it is a promising theranostic agent. It could be highly efficacious in RII and RIT against EGFR-expressing glioma.
Collapse
Affiliation(s)
- Yu Tang
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| | - Zhonghui Liao
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| | - Jing Gao
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| | - Yuhao Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine , West China Hospital, Sichuan University , Chengdu 610041 , P. R. China
| | - Yingjiang Hu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| | - Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine , West China Hospital, Sichuan University , Chengdu 610041 , P. R. China
| | - Huan Ma
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China
| |
Collapse
|
2
|
Lepareur N. Cold Kit Labeling: The Future of 68Ga Radiopharmaceuticals? Front Med (Lausanne) 2022; 9:812050. [PMID: 35223907 PMCID: PMC8869247 DOI: 10.3389/fmed.2022.812050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last couple of decades, gallium-68 (68Ga) has gained a formidable interest for PET molecular imaging of various conditions, from cancer to infection, through cardiac pathologies or neuropathies. It has gained routine use, with successful radiopharmaceuticals such as somatostatin analogs ([68Ga]Ga-DOTATOC and [68Ga]GaDOTATATE) for neuroendocrine tumors, and PSMA ligands for prostate cancer. It represents a major clinical impact, particularly in the context of theranostics, coupled with their 177Lu-labeled counterparts. Beside those, a bunch of new 68Ga-labeled molecules are in the preclinical and clinical pipelines, with some of them showing great promise for patient care. Increasing clinical demand and regulatory issues have led to the development of automated procedures for the production of 68Ga radiopharmaceuticals. However, the widespread use of these radiopharmaceuticals may rely on simple and efficient radiolabeling methods, undemanding in terms of equipment and infrastructure. To make them technically and economically accessible to the medical community and its patients, it appears mandatory to develop a procedure similar to the well-established kit-based 99mTc chemistry. Already available commercial kits for the production of 68Ga radiopharmaceuticals have demonstrated the feasibility of using such an approach, thus paving the way for more kit-based 68Ga radiopharmaceuticals to be developed. This article discusses the development of 68Ga cold kit radiopharmacy, including technical issues, and regulatory aspects.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, Rennes, France
- Univ Rennes, Inrae, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, Rennes, France
| |
Collapse
|
3
|
Seelam SR, Lee JY, Lee YS, Hong MK, Kim YJ, Banka VK, Lee DS, Chung JK, Jeong JM. Development of (68)Ga-labeled multivalent nitroimidazole derivatives for hypoxia imaging. Bioorg Med Chem 2015; 23:7743-50. [PMID: 26643217 DOI: 10.1016/j.bmc.2015.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022]
Abstract
Radiolabeled nitroimidazole (NI) derivatives have been extensively studied for imaging hypoxia. To increase the hypoxic tissue uptake, we developed (68)Ga-labeled agents based on mono-, bis-, and trisnitroimidazole conjugates with the chelating agent 1,4,7-triazacyclononane-1,4,7-tris[methyl(2-carboxyethyl)phosphinic acid] (TRAP). All the three agents showed high radiolabeling yields (>96%) and were found to be stable up to 4h in prepared medium at room temperature and in human serum at 37°C. The trivalent agent showed a significant increase in hypoxic to normoxic uptake ratio (p <0.005) according to the in vitro cell uptake experiments. Immunohistochemical analysis confirmed the presence of hypoxia in xenografted CT26 tumor tissue. The trivalent derivative ((68)Ga-3: 0.17±0.04, (68)Ga-4: 0.33±0.04, (68)Ga-5: 0.45±0.09, and (68)Ga-6: 0.47±0.05% ID/g) showed the highest uptake by tumor cells according to the biodistribution studies in CT-26 xenografted mice. All the nitroimidazole derivatives showed significantly higher uptake by tumor cells than the control agent (p <0.05) at 1h post-injection. The trivalent derivative ((68)Ga-3: 0.10±0.06; (68)Ga-4: 0.20±0.06; (68)Ga-5: 0.33±0.08; (68)Ga-6: 0.59±0.09) also showed the highest standard uptake value for tumor cells at 1h post-injection in animal PET studies using CT-26 xenografted mice. In conclusion, we successfully synthesized multivalent (68)Ga-labeled NI derivatives for imaging hypoxia. Among them, the trivalent agent showed the highest tumor uptake in biodistribution and animal PET studies.
Collapse
Affiliation(s)
- Sudhakara Reddy Seelam
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Youn Lee
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mi Kyung Hong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Kim
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Vinay Kumar Banka
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Enantiopure bifunctional chelators for copper radiopharmaceuticals – Does chirality matter in radiotracer design? Eur J Med Chem 2014; 80:308-15. [DOI: 10.1016/j.ejmech.2014.04.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/10/2023]
|
5
|
Bottorff SC, Moore AL, Wemple AR, Bučar DK, MacGillivray LR, Benny PD. pH-Controlled Coordination Mode Rearrangements of “Clickable” Huisgen-Based Multidentate Ligands with [MI(CO)3]+ (M = Re, 99mTc). Inorg Chem 2013; 52:2939-50. [DOI: 10.1021/ic302330u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shalina C. Bottorff
- Department
of Chemistry, Washington State University, P.O. Box 644630, Pullman, Washington 99164, United States
| | - Adam L. Moore
- Department
of Chemistry, Washington State University, P.O. Box 644630, Pullman, Washington 99164, United States
| | - Ariana R. Wemple
- Department
of Chemistry, Washington State University, P.O. Box 644630, Pullman, Washington 99164, United States
| | - Dejan-Krešimir Bučar
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
| | | | - Paul D. Benny
- Department
of Chemistry, Washington State University, P.O. Box 644630, Pullman, Washington 99164, United States
| |
Collapse
|
6
|
Abstract
The driving force in the research and development of new hybrid PET-CT/MR imaging scanners is the production of images with optimum quality, accuracy, and resolution. However, the acquisition process is limited by several factors. Key issues are the respiratory and cardiac motion artifacts that occur during an imaging session. In this article the necessary tools for modeling and simulation of realistic high-resolution four-dimensional PET-CT and PET-MR imaging data are described. Beyond the need for four-dimensional simulations, accurate modeling of the acquisition process can be included within the reconstruction algorithms assisting in the improvement of image quality and accuracy of estimation of physiologic parameters from four-dimensional hybrid PET imaging.
Collapse
|
7
|
Koopmans KP, Glaudemans AWJM. Rationale for the use of radiolabelled peptides in diagnosis and therapy. Eur J Nucl Med Mol Imaging 2012; 39 Suppl 1:S4-10. [PMID: 22388630 DOI: 10.1007/s00259-011-2038-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nuclear medicine techniques are becoming more important in imaging oncological and infectious diseases. For metabolic imaging of these diseases, antibody and peptide imaging are currently used. In recent years peptide imaging has become important, therefore the rationale for the use of peptide imaging is described in this article. Criteria for a successful peptide tracer are a high target specificity, a high binding affinity, a long metabolic stability and a high target-to-background ratio. Tracer internalization is also beneficial. For oncological imaging, many tracers are available, most originating from regulatory peptides, but penetrating peptides are also being developed. Peptides for imaging inflammatory and infectious diseases include regulatory peptides, antimicrobial peptides and others. In conclusion, for the imaging of oncological, imflammatory and infectious diseases, many promising peptides are being developed. The ideal peptide probe is characterized by rapid and specific target localization and binding with a high tumour-to-background ratio.
Collapse
Affiliation(s)
- K P Koopmans
- Department of Radiology and Nuclear Medicine, Martini Hospital, Van Swietenplein 1, 9728 NT Groningen, The Netherlands.
| | | |
Collapse
|
8
|
Singh AN, Liu W, Hao G, Kumar A, Gupta A, Öz OK, Hsieh JT, Sun X. Multivalent bifunctional chelator scaffolds for gallium-68 based positron emission tomography imaging probe design: signal amplification via multivalency. Bioconjug Chem 2011; 22:1650-62. [PMID: 21740059 DOI: 10.1021/bc200227d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of the multivalent effect has been well recognized in the design of molecular imaging probes toward the desired imaging signal amplification. Recently, we reported a bifunctional chelator (BFC) scaffold design, which provides a simple and versatile approach to impart multivalency to radiometal based nuclear imaging probes. In this work, we report a series of BFC scaffolds ((t)Bu(3)-1-COOH, (t)Bu(3)-2-(COOH)(2), and (t)Bu(3)-3-(COOH)(3)) constructed on the framework of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for (68)Ga-based PET probe design and signal amplification via the multivalent effect. For proof of principle, a known integrin α(v)β(3) specific ligand (c(RGDyK)) was used to build the corresponding NOTA conjugates (H(3)1, H(3)2, and H(3)3), which present 1-3 copies of c(RGDyK) peptide, respectively, in a systematic manner. Using the integrin α(v)β(3) binding affinities (IC(50) values), enhanced specific binding was observed for multivalent conjugates (H(3)2: 43.9 ± 16.1 nM; H(3)3: 14.7 ± 5.0 nM) as compared to their monovalent counterpart (H(3)1: 171 ± 60 nM) and the intact c(RGDyK) peptide (204 ± 76 nM). The obtained conjugates were efficiently labeled with (68)Ga(3+) within 30 min at room temperature in high radiochemical yields (>95%). The in vivo evaluation of the labeled conjugates, (68)Ga-1, (68)Ga-2, and (68)Ga-3, was performed using male severe combined immunodeficiency (SCID) mice bearing integrin α(v)β(3) positive PC-3 tumor xenografts (n = 3). All (68)Ga-labeled conjugates showed high in vivo stability with no detectable metabolites found by radio-HPLC within 2 h postinjection (p.i.). The PET signal amplification in PC-3 tumor by the multivalent effect was clearly displayed by the tumor uptake of the (68)Ga-labeled conjugates ((68)Ga-3: 2.55 ± 0.50%ID/g; (68)Ga-2: 1.90 ± 0.10%ID/g; (68)Ga-1: 1.66 ± 0.15%ID/g) at 2 h p.i. In summary, we have designed and synthesized a series of NOTA-based BFC scaffolds with signal amplification properties, which may find potential applications as diagnostic gallium radiopharmaceuticals.
Collapse
Affiliation(s)
- Ajay N Singh
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Franzen S. A comparison of peptide and folate receptor targeting of cancer cells: from single agent to nanoparticle. Expert Opin Drug Deliv 2011; 8:281-98. [DOI: 10.1517/17425247.2011.554816] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Donnelly PS. The role of coordination chemistry in the development of copper and rhenium radiopharmaceuticals. Dalton Trans 2011; 40:999-1010. [PMID: 21203624 DOI: 10.1039/c0dt01075h] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There are several isotopes of copper and rhenium that are of interest in the development of new molecular imaging or radiotherapeutic agents. This perspective article highlights the role of coordination chemistry in the design of copper and rhenium radiopharmaceuticals engineered to selectively target tissue of interest such as cancer cells or pathological features associated with Alzheimer's disease. The coordination chemistry of copper bis(thiosemicarbazone) derivatives and copper macrocyclic complexes is discussed in terms of their potential application as targeted positron emission tomography tracers for non-invasive diagnostic imaging. A range of rhenium complexes with different ligands with rhenium in different oxidation states are introduced and their potential to be translated to new radiotherapeutic agents discussed.
Collapse
Affiliation(s)
- Paul S Donnelly
- The School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
11
|
Joshi BP, Wang TD. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging. Cancers (Basel) 2010; 2:1251-87. [PMID: 22180839 PMCID: PMC3237638 DOI: 10.3390/cancers2021251] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 01/09/2023] Open
Abstract
Cancer is one of the major causes of mortality and morbidity in our health care system. Molecular imaging is an emerging methodology for the early detection of cancer, and the development of exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect pre-malignant lesions. This integrated imaging strategy will permit clinicians to not only localize lesions within the body, but also to visualize the expression and activity of specific molecules. This information is expected to have a major impact on diagnosis, therapy, drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, nuclear and MRI imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research.
Collapse
Affiliation(s)
- Bishnu P. Joshi
- Division of Gastroenterology, Department of Medicine, University of Michigan, School of Medicine, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA
| | - Thomas D. Wang
- Division of Gastroenterology, Department of Medicine, University of Michigan, School of Medicine, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|