1
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
2
|
Latimer NR, Dewdney A, Campioni M. A cautionary tale: an evaluation of the performance of treatment switching adjustment methods in a real world case study. BMC Med Res Methodol 2024; 24:17. [PMID: 38253996 PMCID: PMC10802004 DOI: 10.1186/s12874-024-02140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Treatment switching in randomised controlled trials (RCTs) is a problem for health technology assessment when substantial proportions of patients switch onto effective treatments that would not be available in standard clinical practice. Often statistical methods are used to adjust for switching: these can be applied in different ways, and performance has been assessed in simulation studies, but not in real-world case studies. We assessed the performance of adjustment methods described in National Institute for Health and Care Excellence Decision Support Unit Technical Support Document 16, applying them to an RCT comparing panitumumab to best supportive care (BSC) in colorectal cancer, in which 76% of patients randomised to BSC switched onto panitumumab. The RCT resulted in intention-to-treat hazard ratios (HR) for overall survival (OS) of 1.00 (95% confidence interval [CI] 0.82-1.22) for all patients, and 0.99 (95% CI 0.75-1.29) for patients with wild-type KRAS (Kirsten rat sarcoma virus). METHODS We tested several applications of inverse probability of censoring weights (IPCW), rank preserving structural failure time models (RPSFTM) and simple and complex two-stage estimation (TSE) to estimate treatment effects that would have been observed if BSC patients had not switched onto panitumumab. To assess the performance of these analyses we ascertained the true effectiveness of panitumumab based on: (i) subsequent RCTs of panitumumab that disallowed treatment switching; (ii) studies of cetuximab that disallowed treatment switching, (iii) analyses demonstrating that only patients with wild-type KRAS benefit from panitumumab. These sources suggest the true OS HR for panitumumab is 0.76-0.77 (95% CI 0.60-0.98) for all patients, and 0.55-0.73 (95% CI 0.41-0.93) for patients with wild-type KRAS. RESULTS Some applications of IPCW and TSE provided treatment effect estimates that closely matched the point-estimates and CIs of the expected truths. However, other applications produced estimates towards the boundaries of the expected truths, with some TSE applications producing estimates that lay outside the expected true confidence intervals. The RPSFTM performed relatively poorly, with all applications providing treatment effect estimates close to 1, often with extremely wide confidence intervals. CONCLUSIONS Adjustment analyses may provide unreliable results. How each method is applied must be scrutinised to assess reliability.
Collapse
Affiliation(s)
- Nicholas R Latimer
- Sheffield Centre for Health and Related Research (SCHARR), University of Sheffield, Regent Court, 30 Regent Street, Sheffield, South Yorkshire, S1 4DA, UK.
- Delta Hat Limited, Nottingham, UK.
| | - Alice Dewdney
- Weston Park Cancer Centre, Sheffield Teaching Hospital, Sheffield, UK
| | | |
Collapse
|
3
|
Yap TA, Jacobs I, Baumfeld Andre E, Lee LJ, Beaupre D, Azoulay L. Application of Real-World Data to External Control Groups in Oncology Clinical Trial Drug Development. Front Oncol 2022; 11:695936. [PMID: 35070951 PMCID: PMC8771908 DOI: 10.3389/fonc.2021.695936] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Randomized controlled trials (RCTs) that assess overall survival are considered the "gold standard" when evaluating the efficacy and safety of a new oncology intervention. However, single-arm trials that use surrogate endpoints (e.g., objective response rate or duration of response) to evaluate clinical benefit have become the basis for accelerated or breakthrough regulatory approval of precision oncology drugs for cases where the target and research populations are relatively small. Interpretation of efficacy in single-arm trials can be challenging because such studies lack a standard-of-care comparator arm. Although an external control group can be based on data from other clinical trials, using an external control group based on data collected outside of a trial may not only offer an alternative to both RCTs and uncontrolled single-arm trials, but it may also help improve decision-making by study sponsors or regulatory authorities. Hence, leveraging real-world data (RWD) to construct external control arms in clinical trials that investigate the efficacy and safety of drug interventions in oncology has become a topic of interest. Herein, we review the benefits and challenges associated with the use of RWD to construct external control groups, and the relevance of RWD to early oncology drug development.
Collapse
Affiliation(s)
- Timothy A. Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ira Jacobs
- Pfizer Inc., New York, NY, United States
| | | | | | | | - Laurent Azoulay
- Centre for Clinical Epidemiology Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health and Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Kato T, Kagawa Y, Kuboki Y, Gamoh M, Komatsu Y, Yasui H, Satake H, Oki E, Tanioka H, Kotaka M, Makiyama A, Denda T, Goto M, Yoshino T, Yamazaki K, Soeda J, Shibuya K, Iwata M, Oba K, Yamaguchi K. Safety and efficacy of panitumumab in combination with trifluridine/tipiracil for pre-treated patients with unresectable, metastatic colorectal cancer with wild-type RAS: The phase 1/2 APOLLON study. Int J Clin Oncol 2021; 26:1238-1247. [PMID: 33928486 PMCID: PMC8213662 DOI: 10.1007/s10147-021-01902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/17/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND We aimed to assess the safety and efficacy of combination treatment with panitumumab plus trifluridine/tipiracil (FTD/TPI) in patients with wild-type RAS metastatic colorectal cancer (mCRC) who were refractory/intolerant to standard therapies other than anti-epidermal growth factor receptor therapy. METHODS APOLLON was an open-label, multicentre, phase 1/2 trial. In the phase 1 part, 3 + 3 de-escalation design was used to investigate the recommended phase 2 dose (RP2D); all patients in the phase 2 part received the RP2D. The primary endpoint was investigator-assessed progression-free survival (PFS) rate at 6 months. Secondary endpoints included PFS, overall survival (OS), overall response rate (ORR), disease control rate (DCR), time to treatment failure (TTF), and safety. RESULTS Fifty-six patients were enrolled (phase 1, n = 7; phase 2, n = 49) at 25 Japanese centres. No dose-limiting toxicities were observed in patients receiving panitumumab (6 mg/kg every 2 weeks) plus FTD/TPI (35 mg/m2 twice daily; days 1-5 and 8-12 in a 28-day cycle), which became RP2D. PFS rate at 6 months was 33.3% (90% confidence interval [CI] 22.8-45.3). Median PFS, OS, ORR, DCR, and TTF were 5.8 months (95% CI 4.5-6.5), 14.1 months (95% CI 12.2-19.3), 37.0% (95% CI 24.3-51.3), 81.5% (95% CI 68.6-90.8), and 5.8 months (95% CI 4.29-6.21), respectively. Neutrophil count decreased (47.3%) was the most common Grade 3/4 treatment-emergent adverse event. No treatment-related deaths occurred. CONCLUSION Panitumumab plus FTD/TPI exhibited favourable anti-tumour activity with a manageable safety profile and may be a therapeutic option for pre-treated mCRC patients.
Collapse
Affiliation(s)
- Takeshi Kato
- National Hospital Organization Osaka National Hospital, 2 Chome-1-14 Hoenzaka, Chuo Ward, Osaka, 540-0006, Japan
| | - Yoshinori Kagawa
- Kansai Rosai Hospital, 3 Chome-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Yasutoshi Kuboki
- National Cancer Center Hospital East, 6 Chome-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Makio Gamoh
- Osaki Citizen Hospital, Furukawa Honami, 3 Chome, Osaki, 989-6183, Japan
| | - Yoshito Komatsu
- Hokkaido University Hospital, 5 Chome Kita 14 Jonishi, Kita Ward, Sapporo, Hokkaido, 060-8648, Japan
| | - Hirofumi Yasui
- Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto District, Shizuoka, 411-0934, Japan
| | - Hironaga Satake
- Kobe City Medical Center General Hospital, 2 Chome-1-1 Minatojima Minamimachi, Chuo Ward, Kobe, Hyogo, 650-0047, Japan
- Cancer Treatment Center, Kansai Medical University Hospital, 2 Chome-3-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Eiji Oki
- Kyushu University, Maidashi 3 Chome-1-3, Higashi Ward, Fukuoka, 812-0053, Japan
| | - Hiroaki Tanioka
- Okayama Rosai Hospital, 1 Chome-10-25 Chikkomidorimachi, Minami Ward, Okayama, 702-8055, Japan
- Medical Oncology Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Masahito Kotaka
- Sano Hospital, 2 Chome-5-1 Shimizugaoka, Tarumi Ward, Kobe, Hyogo, 655-0031, Japan
| | - Akitaka Makiyama
- Japan Community Healthcare Organization Kyushu Hospital, 1 Chome-8-1 Kishinoura, Yahatanishi Ward, Kitakyushu, Fukuoka, 806-8501, Japan
- Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tadamichi Denda
- Chiba Cancer Center, 666-2 Nitona-cho, Chuo Ward, Chiba, 260-8717, Japan
| | - Masahiro Goto
- Osaka Medical College Hospital, 2-7 Daigakumachi, Takatsuki, Osaka, 569-0096, Japan
| | - Takayuki Yoshino
- National Cancer Center Hospital East, 6 Chome-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Kentaro Yamazaki
- Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto District, Shizuoka, 411-0934, Japan
| | - Junpei Soeda
- Takeda Pharmaceutical Company, Ltd, Nihonbashi-Honcho 2 Chome-1-1, Chuo Ward, Tokyo, 103-8668, Japan
| | - Kazunori Shibuya
- Takeda Pharmaceutical Company, Ltd, Nihonbashi-Honcho 2 Chome-1-1, Chuo Ward, Tokyo, 103-8668, Japan
| | - Masaru Iwata
- Takeda Pharmaceutical Company, Ltd, Nihonbashi-Honcho 2 Chome-1-1, Chuo Ward, Tokyo, 103-8668, Japan
| | - Koji Oba
- University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Kensei Yamaguchi
- Gastroenterological Chemotherapy Department, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3 Chome-8-31, Ariake, Koto, Tokyo, 135-8550, Japan.
| |
Collapse
|
5
|
Shi L, Suh W, Kavanaugh MM, Mills G, Thayer S, Shi R. Propensity Score Matching Analysis of the Effect of Payer Status on the Survival of Colon Cancer Patients. Cureus 2021; 13:e15748. [PMID: 34285854 PMCID: PMC8286796 DOI: 10.7759/cureus.15748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 11/05/2022] Open
Abstract
Background and objective Colon cancer is one of the most common types of cancer globally. The factors that could affect colon cancer survival include age, stage, treatment, and other socioeconomic aspects. Payer status has been shown to be a significant predictor of cancer patient survival in retrospective studies. However, due to the limitations of retrospective studies, patient baseline characteristics between payer statuses are not comparable. Few studies have addressed the effect of payer status on the overall survival (OS) of patients using propensity score matching (PSM). In light of this, we conducted a study to examine the effect of payer status on the survival of colon cancer patients based on PSM. Materials and methods About 66,493 stage II/III colon cancer patients aged 40-90 years and diagnosed between 2004 and 2015 were analyzed from a de-identified National Cancer Database (NCDB) file. All patients had undergone surgery, and patients who had received radiation therapy, hormone therapy, immunotherapy, palliative care, or therapies other than chemotherapy were excluded. Only private or Medicaid payer status was included. The propensity score was calculated by computing the probability of patients being in the Medicaid group using logistic regression. The PSMATCH procedure in the SAS software (SAS Inc., Gary, NC) was used to perform PSM on patients with Medicaid and private insurance. The greedy nearest neighbor matching method was used to match one Medicaid to one privately insured patient with a caliper of 0.2. At the same time, an exact match was done for gender, age group, race, and stage at diagnosis. Multivariate Cox regression was then used to estimate the effect of payer status on survival before and after PSM. Results Among the 66,493 patients, 90.3% were privately insured and 9.7% had Medicaid. In univariate analysis, payer status was found to be a significant predictor of OS. Prior to PSM, the median overall survival (MOS) for patients with private insurance was 12.75 years, while those with Medicaid had a MOS of 9.02 years. After PSM, 6,167 paired patients were matched, and patients with private insurance had a MOS of >12.82 years and Medicaid patients had a MOS of 8.88 years. After PSM, patients with Medicaid had a 50% increased risk of death, and payer status proved to be a statistically significant predictor of OS of colon cancer. Conclusion Based on our findings, as per the PSM method, payer status can be a significant predictor of survival among colon cancer patients. Also, chemotherapy, race, age, and other socioeconomic factors were also found to be significant predictors of OS. Further research should be conducted to investigate other covariates not studied here and the mediation effect of payer on the survival of cancer patients.
Collapse
Affiliation(s)
- Lawrence Shi
- Hematology-Oncology, Tulane University, New Orleans, USA
| | - Winston Suh
- Hematology-Oncology, Department of Medicine & Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA
| | - Mindie M Kavanaugh
- Hematology-Oncology, Department of Medicine & Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA
| | - Glenn Mills
- Hematology-Oncology, Department of Medicine & Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA
| | - Sarah Thayer
- Surgical Oncology, Department of Medicine & Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA
| | - Runhua Shi
- Hematology-Oncology, Department of Medicine & Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA
| |
Collapse
|
6
|
Qi WX, Zhao S, Chen J. Risk factors for developing cardiac toxicities in cancer patients treated with panitumumab combination therapy. Future Oncol 2020; 16:1359-1370. [PMID: 32422068 DOI: 10.2217/fon-2020-0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To evaluate the incidence and risk of cardiac toxicities associated with panitumumab in advanced cancer of Caucasian patients. Materials & methods: The incidence of cardiac toxicity was assessed by simple incidence rates and rates per 100 person-years. Univariate and multivariate Cox regression was conducted. Results: Panitumumab-containing therapy significantly increased the risk of developing cardiac arrhythmias (p = 0.036), but not for any cardiac event (p = 0.24) or ischemic event (p = 0.087). The absolute rate of developing cardiac arrhythmia was 10.0 events versus 7.5 events per 100 person-years. Pre-existing hypertension (p = 0.033), history of cardiac disease (p = 0.055) or panitumumab usage (p = 0.046) were risk factors for cardiac arrhythmias. Conclusion: The addition of panitumumab to chemotherapy increases the risk of developing cardiac arrhythmia, but not for any cardiac toxicity or ischemic events.
Collapse
Affiliation(s)
- Wei-Xiang Qi
- Department of Radiation Oncology, Rui Jin Hospital Affiliated Medicine School of Shanghai Jiao Tong University, Shanghai, PR China
| | - Shengguang Zhao
- Department of Radiation Oncology, Rui Jin Hospital Affiliated Medicine School of Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiayi Chen
- Department of Radiation Oncology, Rui Jin Hospital Affiliated Medicine School of Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
7
|
Le DM, Ahmed S, Ahmed S, Brunet B, Davies J, Doll C, Ferguson M, Ginther N, Gordon V, Hamilton T, Hebbard P, Helewa R, Kim CA, Lee-Ying R, Lim H, Loree JM, McGhie JP, Mulder K, Park J, Renouf D, Wong RPW, Zaidi A, Asif T. Report from the 20th annual Western Canadian Gastrointestinal Cancer Consensus Conference; Saskatoon, Saskatchewan; 28-29 September 2018. Curr Oncol 2019; 26:e773-e784. [PMID: 31896948 PMCID: PMC6927778 DOI: 10.3747/co.26.5517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The 20th annual Western Canadian Gastrointestinal Cancer Consensus Conference was held in Saskatoon, Saskatchewan, 28-29 September 2018. This interactive multidisciplinary conference is attended by health care professionals from across Western Canada (British Columbia, Alberta, Saskatchewan, and Manitoba) who are involved in the care of patients with gastrointestinal cancers. In addition, invited speakers from other provinces participate. Surgical, medical, and radiation oncologists, and allied health care professionals participated in presentations and discussion sessions for the purpose of developing the recommendations presented here. This consensus statement addresses current issues in the management of colorectal cancers.
Collapse
Affiliation(s)
- D M Le
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK
| | - S Ahmed
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK
| | - S Ahmed
- CancerCare Manitoba, Winnipeg, MB
| | - B Brunet
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK
| | | | - C Doll
- Tom Baker Cancer Centre, Alberta Health Services, AB
| | - M Ferguson
- Allan Blair Cancer Centre, Saskatchewan Cancer Agency, Regina, SK
| | - N Ginther
- University of Saskatchewan, Saskatoon, SK
| | - V Gordon
- CancerCare Manitoba, Winnipeg, MB
| | - T Hamilton
- University of British Columbia, Vancouver, BC
| | | | - R Helewa
- University of Manitoba, Winnipeg, MB
| | - C A Kim
- CancerCare Manitoba, Winnipeg, MB
| | - R Lee-Ying
- Tom Baker Cancer Centre, Alberta Health Services, AB
| | | | | | | | - K Mulder
- Cross Cancer Institute, Edmonton, AB
| | - J Park
- CancerCare Manitoba, Winnipeg, MB
| | | | | | - A Zaidi
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK
| | - T Asif
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK
| |
Collapse
|
8
|
Yoshino T, Arnold D, Taniguchi H, Pentheroudakis G, Yamazaki K, Xu RH, Kim TW, Ismail F, Tan IB, Yeh KH, Grothey A, Zhang S, Ahn JB, Mastura MY, Chong D, Chen LT, Kopetz S, Eguchi-Nakajima T, Ebi H, Ohtsu A, Cervantes A, Muro K, Tabernero J, Minami H, Ciardiello F, Douillard JY. Pan-Asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer: a JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol 2019; 29:44-70. [PMID: 29155929 DOI: 10.1093/annonc/mdx738] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The most recent version of the European Society for Medical Oncology (ESMO) consensus guidelines for the treatment of patients with metastatic colorectal cancer (mCRC) was published in 2016, identifying both a more strategic approach to the administration of the available systemic therapy choices, and a greater emphasis on the use of ablative techniques, including surgery. At the 2016 ESMO Asia Meeting, in December 2016, it was decided by both ESMO and the Japanese Society of Medical Oncology (JSMO) to convene a special guidelines meeting, endorsed by both ESMO and JSMO, immediately after the JSMO 2017 Annual Meeting. The aim was to adapt the ESMO consensus guidelines to take into account the ethnic differences relating to the toxicity as well as other aspects of certain systemic treatments in patients of Asian ethnicity. These guidelines represent the consensus opinions reached by experts in the treatment of patients with mCRC identified by the Presidents of the oncological societies of Japan (JSMO), China (Chinese Society of Clinical Oncology), Korea (Korean Association for Clinical Oncology), Malaysia (Malaysian Oncological Society), Singapore (Singapore Society of Oncology) and Taiwan (Taiwan Oncology Society). The voting was based on scientific evidence and was independent of both the current treatment practices and the drug availability and reimbursement situations in the individual participating Asian countries.
Collapse
Affiliation(s)
- T Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - D Arnold
- CUF Hospitals Cancer Centre, Lisbon, Portugal
| | - H Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - G Pentheroudakis
- Department of Medical Oncology, University of Ioannina, Ioannina, Greece
| | - K Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - R-H Xu
- Department of Medical Oncology, Sun Yat-Sen University (SYSU) Cancer Center, Guangzhou, China
| | - T W Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - F Ismail
- Department of Radiotherapy & Oncology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - I B Tan
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - K-H Yeh
- Department of Oncology, National Taiwan University Hospital, and Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - A Grothey
- Division of Medical Oncology, Mayo Clinic Cancer Center, Rochester, USA
| | - S Zhang
- Cancer Institute, Zhejiang University, Hangzhou, China
| | - J B Ahn
- Division of Oncology, Department of Internal Medicine, Yonsei Cancer Center, Seoul, Korea
| | - M Y Mastura
- Pantai Cancer Institute, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - D Chong
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - L-T Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - S Kopetz
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Centre, Houston, USA
| | - T Eguchi-Nakajima
- Department of Clinical Oncology, School of Medicine, St. Marianna University, Kanagawa, Japan
| | - H Ebi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - A Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - A Cervantes
- CIBERONC, Department of Medical Oncology, Institute of Health Research, INCLIVIA, University of Valencia, Valencia, Spain
| | - K Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - J Tabernero
- Medical Oncology Department, Vall d' Hebron University Hospital, Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - H Minami
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan
| | - F Ciardiello
- Division of Medical Oncology, Seconda Università di Napoli, Naples, Italy
| | | |
Collapse
|
9
|
Falzone L, Salomone S, Libra M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front Pharmacol 2018; 9:1300. [PMID: 30483135 PMCID: PMC6243123 DOI: 10.3389/fphar.2018.01300] [Citation(s) in RCA: 544] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
The medical history of cancer began millennia ago. Historical findings of patients with cancer date back to ancient Egyptian and Greek civilizations, where this disease was predominantly treated with radical surgery and cautery that were often ineffective, leading to the death of patients. Over the centuries, important discoveries allowed to identify the biological and pathological features of tumors, without however contributing to the development of effective therapeutic approaches until the end of the 1800s, when the discovery of X-rays and their use for the treatment of tumors provided the first modern therapeutic approach in medical oncology. However, a real breakthrough took place after the Second World War, with the discovery of cytotoxic antitumor drugs and the birth of chemotherapy for the treatment of various hematological and solid tumors. Starting from this epochal turning point, there has been an exponential growth of studies concerning the use of new drugs for cancer treatment. The second fundamental breakthrough in the field of oncology and pharmacology took place at the beginning of the '80s, thanks to molecular and cellular biology studies that allowed the development of specific drugs for some molecular targets involved in neoplastic processes, giving rise to targeted therapy. Both chemotherapy and target therapy have significantly improved the survival and quality of life of cancer patients inducing sometimes complete tumor remission. Subsequently, at the turn of the third millennium, thanks to genetic engineering studies, there was a further advancement of clinical oncology and pharmacology with the introduction of monoclonal antibodies and immune checkpoint inhibitors for the treatment of advanced or metastatic tumors, for which no effective treatment was available before. Today, cancer research is always aimed at the study and development of new therapeutic approaches for cancer treatment. Currently, several researchers are focused on the development of cell therapies, anti-tumor vaccines, and new biotechnological drugs that have already shown promising results in preclinical studies, therefore, in the near future, we will certainly assist to a new revolution in the field of medical oncology.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| |
Collapse
|
10
|
Furuse J, Kurata T, Okano N, Fujisaka Y, Naruge D, Shimizu T, Kitamura H, Iwasa T, Nagashima F, Nakagawa K. An early clinical trial of Salirasib, an oral RAS inhibitor, in Japanese patients with relapsed/refractory solid tumors. Cancer Chemother Pharmacol 2018; 82:511-519. [PMID: 29992354 PMCID: PMC6105164 DOI: 10.1007/s00280-018-3618-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/04/2018] [Indexed: 12/23/2022]
Abstract
Purpose Patients with RAS-positive tumors respond poorly to chemotherapies and have a few treatment options. Salirasib is an oral RAS inhibitor that competitively blocks the membrane association of RAS proteins. The aim of this phase I multiple-ascending-dose clinical trial was to investigate the safety and pharmacokinetics of Salirasib in Japanese patients with relapsed/refractory solid tumors and to explore its efficacy. Methods Salirasib was started at a dose of 100-mg twice-daily and escalated to a maximum of 1000-mg twice-daily from days 1 to 21 of a 28-day regimen. The pharmacokinetics was evaluated on days 1 and 21. Dose-limiting toxicity (DLT) and adverse events (AEs) were monitored throughout the trial. Patients with stable disease or better repeated the dosing regimen. Results A total of 21 patients received Salirasib. Among 14 patients tested, 4 had KRAS mutations. Cmax and AUCinf were maximal at 800 mg. No maximum tolerable dose was discerned, as no DLT was observed in any dosing group. The most frequently observed AEs were gastrointestinal disturbances, including diarrhea, abdominal pain, and nausea. No AEs led to discontinuation. All patients completed the first regimen and 11 patients repeated the regimen (median: 2 cycles; range: 1–13). Patients with KRAS mutations showed median progression-free survival of 227 days (range: 79–373). Conclusion Salirasib was safe and well tolerated in Japanese patients, and 800-mg twice-daily is recommended for phase II trials. Although the number of participants with KRAS mutations was limited, the remarkably long progression-free period warrants further investigation. Clinical trial registration JAPIC Clinical Trials Information; JapicCTI-121751. Electronic supplementary material The online version of this article (10.1007/s00280-018-3618-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junji Furuse
- Department of Medical Oncology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Takayasu Kurata
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Yasuhito Fujisaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Daisuke Naruge
- Department of Medical Oncology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Toshio Shimizu
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hiroshi Kitamura
- Department of Medical Oncology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Fumio Nagashima
- Department of Medical Oncology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
11
|
Maher B, Ryan E, Little M, Boardman P, Stedman B. The management of colorectal liver metastases. Clin Radiol 2017; 72:617-625. [DOI: 10.1016/j.crad.2017.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
|
12
|
Munasinghe WP, Mittapalli RK, Li H, Hoffman DM, Holen KD, Menon RM, Xiong H. Evaluation of the effect of the EGFR antibody-drug conjugate ABT-414 on QT interval prolongation in patients with advanced solid tumors likely to over-express EGFR. Cancer Chemother Pharmacol 2017; 79:915-922. [DOI: 10.1007/s00280-017-3284-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
|
13
|
Loree JM, Kopetz S, Raghav KPS. Current companion diagnostics in advanced colorectal cancer; getting a bigger and better piece of the pie. J Gastrointest Oncol 2017; 8:199-212. [PMID: 28280626 PMCID: PMC5334060 DOI: 10.21037/jgo.2017.01.01] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022] Open
Abstract
While the treatment of colorectal cancer continues to rely heavily on conventional cytotoxic therapy, an increasing number of targeted agents are under development. Many of these treatments require companion diagnostic tests in order to define an appropriate population that will derive benefit. In addition, a growing number of biomarkers provide prognostic information about a patient's malignancy. As we learn more about these biomarkers and their assays, selecting the appropriate companion diagnostic becomes increasingly important. In the case of many biomarkers, there are numerous assays which could provide the same information to a treating physician, however each assay has strengths and weaknesses. Institutions must balance cost, assay sensitivity, turn-around time, and labor resources when selecting which assay to offer. In this review we will discuss the current state of companion diagnostics available in metastatic colorectal cancer and explore emerging biomarkers and their assays. We will focus on KRAS, BRAF, HER2, and PIK3CA testing, as well as microsatellite stability assessment and multigene panels.
Collapse
Affiliation(s)
- Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kanwal P S Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer. Br J Cancer 2016; 115:1206-1214. [PMID: 27736842 PMCID: PMC5104888 DOI: 10.1038/bjc.2016.309] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/11/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We assessed the treatment effect of panitumumab plus best supportive care (BSC) vs BSC on overall survival (OS) in patients with chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer (mCRC) and report the first prospective extended RAS analysis in a phase 3 trial. METHODS Patients with wild-type KRAS exon 2 mCRC were randomised 1 : 1 to panitumumab (6 mg kg-1 Q2W) plus BSC or BSC. On-study crossover was prohibited. RAS mutation status was determined by central laboratory testing. The primary endpoint was OS in wild-type KRAS exon 2 mCRC; OS in wild-type RAS mCRC (KRAS and NRAS exons 2, 3, and 4) was a secondary endpoint. RESULTS Three hundred seventy seven patients with wild-type KRAS exon 2 mCRC were randomised. Median OS was 10.0 months with panitumumab plus BSC vs 7.4 months with BSC (HR=0.73; 95% CI=0.57-0.93; P=0.0096). RAS ascertainment was 86%. In wild-type RAS mCRC, median OS for panitumumab plus BSC was 10.0 vs 6.9 months for BSC (HR=0.70; 95% CI=0.53-0.93; P=0.0135). Patients with RAS mutations did not benefit from panitumumab (OS HR=0.99; 95% CI=0.49-2.00). No new safety signals were observed. CONCLUSIONS Panitumumab significantly improved OS in wild-type KRAS exon 2 mCRC. The effect was more pronounced in wild-type RAS mCRC, validating previous retrospective analyses.
Collapse
|
15
|
Lopez NE, Peterson CY. Advances in Biomarkers: Going Beyond the Carcinoembryonic Antigen. Clin Colon Rectal Surg 2016; 29:196-204. [PMID: 27582644 DOI: 10.1055/s-0036-1584289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Using biologically available markers to guide treatment decisions in colorectal cancer care is becoming increasingly common, though our understanding of these biomarkers is in its infancy. In this article, we will discuss how this area is rapidly changing, review important biomarkers being used currently, and explain how the results influence clinical decision-making. We will also briefly discuss the possibility of a liquid biopsy and explore several exciting and new options.
Collapse
Affiliation(s)
- Nicole E Lopez
- Division of Surgical Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Carrie Y Peterson
- Division of Colorectal Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
16
|
Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, Aranda Aguilar E, Bardelli A, Benson A, Bodoky G, Ciardiello F, D'Hoore A, Diaz-Rubio E, Douillard JY, Ducreux M, Falcone A, Grothey A, Gruenberger T, Haustermans K, Heinemann V, Hoff P, Köhne CH, Labianca R, Laurent-Puig P, Ma B, Maughan T, Muro K, Normanno N, Österlund P, Oyen WJG, Papamichael D, Pentheroudakis G, Pfeiffer P, Price TJ, Punt C, Ricke J, Roth A, Salazar R, Scheithauer W, Schmoll HJ, Tabernero J, Taïeb J, Tejpar S, Wasan H, Yoshino T, Zaanan A, Arnold D. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27:1386-422. [PMID: 27380959 DOI: 10.1093/annonc/mdw235] [Citation(s) in RCA: 2402] [Impact Index Per Article: 266.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/31/2016] [Indexed: 02/11/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in Western countries. Over the last 20 years, and the last decade in particular, the clinical outcome for patients with metastatic CRC (mCRC) has improved greatly due not only to an increase in the number of patients being referred for and undergoing surgical resection of their localised metastatic disease but also to a more strategic approach to the delivery of systemic therapy and an expansion in the use of ablative techniques. This reflects the increase in the number of patients that are being managed within a multidisciplinary team environment and specialist cancer centres, and the emergence over the same time period not only of improved imaging techniques but also prognostic and predictive molecular markers. Treatment decisions for patients with mCRC must be evidence-based. Thus, these ESMO consensus guidelines have been developed based on the current available evidence to provide a series of evidence-based recommendations to assist in the treatment and management of patients with mCRC in this rapidly evolving treatment setting.
Collapse
Affiliation(s)
- E Van Cutsem
- Digestive Oncology, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - A Cervantes
- Medical Oncology Department, INCLIVA University of Valencia, Valencia, Spain
| | - R Adam
- Hepato-Biliary Centre, Paul Brousse Hospital, Villejuif, France
| | - A Sobrero
- Medical Oncology, IRCCS San Martino Hospital, Genova, Italy
| | - J H Van Krieken
- Research Institute for Oncology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - D Aderka
- Division of Oncology, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - E Aranda Aguilar
- Medical Oncology Department, University Hospital Reina Sofia, Cordoba, Spain
| | - A Bardelli
- School of Medicine, University of Turin, Turin, Italy
| | - A Benson
- Division of Hematology/Oncology, Northwestern Medical Group, Chicago, USA
| | - G Bodoky
- Department of Oncology, St László Hospital, Budapest, Hungary
| | - F Ciardiello
- Division of Medical Oncology, Seconda Università di Napoli, Naples, Italy
| | - A D'Hoore
- Abdominal Surgery, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - E Diaz-Rubio
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - J-Y Douillard
- Medical Oncology, Institut de Cancérologie de l'Ouest (ICO), St Herblain
| | - M Ducreux
- Department of Medical Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - A Falcone
- Department of Medical Oncology, University of Pisa, Pisa, Italy Division of Medical Oncology, Department of Oncology, University Hospital 'S. Chiara', Istituto Toscano Tumori, Pisa, Italy
| | - A Grothey
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| | - T Gruenberger
- Department of Surgery I, Rudolfstiftung Hospital, Vienna, Austria
| | - K Haustermans
- Department of Radiation Oncology, University Hospitals Gasthuisberg and KU Leuven, Leuven, Belgium
| | - V Heinemann
- Comprehensive Cancer Center, University Clinic Munich, Munich, Germany
| | - P Hoff
- Instituto do Câncer do Estado de São Paulo, University of São Paulo, São Paulo, Brazil
| | - C-H Köhne
- Northwest German Cancer Center, University Campus Klinikum Oldenburg, Oldenburg, Germany
| | - R Labianca
- Cancer Center, Ospedale Giovanni XXIII, Bergamo, Italy
| | - P Laurent-Puig
- Digestive Oncology Department, European Hospital Georges Pompidou, Paris, France
| | - B Ma
- Department of Clinical Oncology, Prince of Wales Hospital, State Key Laboratory in Oncology in South China, Chinese University of Hong Kong, Shatin, Hong Kong
| | - T Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - K Muro
- Department of Clinical Oncology and Outpatient Treatment Center, Aichi Cancer Center Hospital, Nagoya, Japan
| | - N Normanno
- Cell Biology and Biotherapy Unit, I.N.T. Fondazione G. Pascale, Napoli, Italy
| | - P Österlund
- Helsinki University Central Hospital, Comprehensive Cancer Center, Helsinki, Finland Department of Oncology, University of Helsinki, Helsinki, Finland
| | - W J G Oyen
- The Institute of Cancer Research and The Royal Marsden Hospital, London, UK
| | - D Papamichael
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, Nicosia, Cyprus
| | - G Pentheroudakis
- Department of Medical Oncology, University of Ioannina, Ioannina, Greece
| | - P Pfeiffer
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - T J Price
- Haematology and Medical Oncology Unit, Queen Elizabeth Hospital, Woodville, Australia
| | - C Punt
- Department of Medical Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - J Ricke
- Department of Radiology and Nuclear Medicine, University Clinic Magdeburg, Magdeburg, Germany
| | - A Roth
- Digestive Tumors Unit, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - R Salazar
- Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - W Scheithauer
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - H J Schmoll
- Department of Internal Medicine IV, University Clinic Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - J Tabernero
- Medical Oncology Department, Vall d' Hebron University Hospital, Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - J Taïeb
- Digestive Oncology Department, European Hospital Georges Pompidou, Paris, France
| | - S Tejpar
- Digestive Oncology, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - H Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - T Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - A Zaanan
- Digestive Oncology Department, European Hospital Georges Pompidou, Paris, France
| | - D Arnold
- Instituto CUF de Oncologia (ICO), Lisbon, Portugal
| |
Collapse
|
17
|
Daoud MA, Aboelnaga EM, Mohamed WM. Second-line panitumumab as a triweekly dose for patients with wild-type KRAS exon 2 metastatic colorectal cancer: a single-institution experience. Cancer Biol Med 2016; 13:136-41. [PMID: 27144068 PMCID: PMC4850122 DOI: 10.28092/j.issn.2095-3941.2015.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Panitumumab administered as monotherapy in colorectal cancer (CRC) has shown response and disease stabilization rates of approximately 30%. The current study aimed to evaluate the progression-free survival (PFS) and overall survival (OS) of patients with metastatic colorectal cancer (mCRC) treated with panitumumab every 3 weeks as a second line treatment. METHODS This study is a retrospective analysis of 18 patients, aged more than 18 years, with wild-type KRAS exon 2 mCRC treated with panitumumab as a second-line single agent after progression on first-line chemotherapy. RESULTS The median number of courses received was 10 (range, 4-29), and the median duration of treatment was 30 weeks (range, 12-96 weeks). After a median follow-up period of 13 months, the median PFS was 6 months (range, 4.3-7.7 months) and the median OS was 11 months (range, 7.4-14.5 months). The median PFS was 4 months for patients with < grade 2 skin toxicity and 6 months (range, 4.5-7.5 months) for patients with ≥grade 2 skin rash (P=0.05). The median OS was 9 months (range, 6.4-11.5 months) and 14 months (range, 11.6-16.3 months) for the two groups of patients (P=0.002). CONCLUSIONS Panitumumab given every 3 weeks is effective and well tolerated in patients with advanced CRC that progressed after standard chemotherapy.
Collapse
Affiliation(s)
- Mohamed A. Daoud
- Department of Radiation Oncology, Mansoura Faculty of Medicine, King Abdullah Medical City, Mecca 24246, Saudi Arabia
| | - Engy M. Aboelnaga
- Department of Radiation Oncology, Mansoura Faculty of Medicine, King Abdullah Medical City, Mecca 24246, Saudi Arabia
| | - Wael M. Mohamed
- Department of Radiation Oncology, Mansoura Faculty of Medicine, King Abdullah Medical City, Mecca 24246, Saudi Arabia
| |
Collapse
|
18
|
Lo L, Patel D, Townsend AR, Price TJ. Pharmacokinetic and pharmacodynamic evaluation of panitumumab in the treatment of colorectal cancer. Expert Opin Drug Metab Toxicol 2015; 11:1907-24. [PMID: 26572750 DOI: 10.1517/17425255.2015.1112787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Integration of targeted therapy and additional chemotherapy options has improved median overall survival (OS) in patients with unresectable metastatic colorectal cancer (mCRC). Cetuximab and panitumumab are examples of targeted therapies, specifically against the epidermal growth factor receptor (EGFR). This review focuses on Panitumumab, a fully human IgG2 monoclonal antibody, which inhibits key oncogenic downstream cell signalling pathways. Panitumumab and cetuximab have improved tumour response rate, progression-free survival, and OS in mCRC patients in whom the RAS (Rat Sarcoma) gene is of Wild Type (WT) status. AREAS COVERED The EGFR signalling pathway and preclinical, Phase I and Phase II clinical studies on the pharmacokinetic, pharmacodynamic and safety evaluation of panitumumab are presented. Phase III studies utilising panitumumab in the first, second and third line setting in mCRC are also described. EXPERT OPINION Panitumumab exhibits excellent pharmacokinetics and pharmacodynamics by way of uncomplicated dosing, non-existent drug interactions, minimal infusion reactions and manageable side effects, making it a suitable target for combination treatments. However, innate and acquired resistances are still obstacles. To overcome this, experimented strategies are ongoing, particularly in patients with Her-2 and BRAF gene alterations. Novel biomarkers to improve patient selection and second-generation targeted antibodies are in development.
Collapse
Affiliation(s)
- Louisa Lo
- a Department of Medical Oncology , The Queen Elizabeth Hospital , Woodville , 5011 , SA , Australia
| | - Dainik Patel
- a Department of Medical Oncology , The Queen Elizabeth Hospital , Woodville , 5011 , SA , Australia
| | - Amanda R Townsend
- a Department of Medical Oncology , The Queen Elizabeth Hospital , Woodville , 5011 , SA , Australia.,b School of Medicine , University of Adelaide , Adelaide , 5000 , SA , Australia
| | - Timothy J Price
- a Department of Medical Oncology , The Queen Elizabeth Hospital , Woodville , 5011 , SA , Australia.,b School of Medicine , University of Adelaide , Adelaide , 5000 , SA , Australia
| |
Collapse
|
19
|
van Dijk LK, Boerman OC, Kaanders JHAM, Bussink J. Epidermal growth factor receptor imaging in human head and neck cancer xenografts. Acta Oncol 2015; 54:1263-7. [PMID: 26248024 DOI: 10.3109/0284186x.2015.1063778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Molecular imaging of specific biomarkers can have prognostic, predictive or monitoring value in head and neck squamous cell carcinoma (HNSCC). The epidermal growth factor receptor (EGFR) is involved in various radiation resistance mechanisms as it steers the pathways related to DNA damage repair, proliferation, hypoxia and apoptosis. Radiolabeled labeled F(ab')2 fragments of the EGFR antibody cetuximab can be applied for non-invasive imaging of this receptor. Preclinical studies have shown that radioresistant tumors had a higher tracer uptake after irradiation, probably due to upregulation of membranous EGFR, thereby increasing target availability possibly as a compensation mechanism. Tumors with increased EGFR availability were also more responsive to the EGFR inhibitor cetuximab. Potentially, radionuclide imaging of the EGFR can be applied for monitoring treatment regimens in clinical practice.
Collapse
Affiliation(s)
- Laura K van Dijk
- a Department of Radiation Oncology , Radboud University Medical Center , Nijmegen , The Netherlands
- b Department of Radiology and Nuclear Medicine , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Otto C Boerman
- b Department of Radiology and Nuclear Medicine , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Johannes H A M Kaanders
- a Department of Radiation Oncology , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Johan Bussink
- a Department of Radiation Oncology , Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
20
|
Sakai K, Tsurutani J, Yamanaka T, Yoneshige A, Ito A, Togashi Y, De Velasco MA, Terashima M, Fujita Y, Tomida S, Tamura T, Nakagawa K, Nishio K. Extended RAS and BRAF Mutation Analysis Using Next-Generation Sequencing. PLoS One 2015; 10:e0121891. [PMID: 25954997 PMCID: PMC4425536 DOI: 10.1371/journal.pone.0121891] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/04/2015] [Indexed: 02/05/2023] Open
Abstract
Somatic mutations in KRAS, NRAS, and BRAF genes are related to resistance to anti-EGFR antibodies in colorectal cancer. We have established an extended RAS and BRAF mutation assay using a next-generation sequencer to analyze these mutations. Multiplexed deep sequencing was performed to detect somatic mutations within KRAS, NRAS, and BRAF, including minor mutated components. We first validated the technical performance of the multiplexed deep sequencing using 10 normal DNA and 20 formalin-fixed, paraffin-embedded (FFPE) tumor samples. To demonstrate the potential clinical utility of our assay, we profiled 100 FFPE tumor samples and 15 plasma samples obtained from colorectal cancer patients. We used a variant calling approach based on a Poisson distribution. The distribution of the mutation-positive population was hypothesized to follow a Poisson distribution, and a mutation-positive status was defined as a value greater than the significance level of the error rate (α = 2 x 10-5). The cut-off value was determined to be the average error rate plus 7 standard deviations. Mutation analysis of 100 clinical FFPE tumor specimens was performed without any invalid cases. Mutations were detected at a frequency of 59% (59/100). KRAS mutation concordance between this assay and Scorpion-ARMS was 92% (92/100). DNA obtained from 15 plasma samples was also analyzed. KRAS and BRAF mutations were identified in both the plasma and tissue samples of 6 patients. The genetic screening assay using next-generation sequencer was validated for the detection of clinically relevant RAS and BRAF mutations using FFPE and liquid samples.
Collapse
Affiliation(s)
- Kazuko Sakai
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Junji Tsurutani
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Takeharu Yamanaka
- Department of Biostatistics, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Marco A. De Velasco
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masato Terashima
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yoshihiko Fujita
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shuta Tomida
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Takao Tamura
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
21
|
Pharmacogenomic information in drug labels: European Medicines Agency perspective. THE PHARMACOGENOMICS JOURNAL 2015; 15:201-10. [DOI: 10.1038/tpj.2014.86] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/07/2014] [Accepted: 11/24/2014] [Indexed: 01/12/2023]
|
22
|
Er TK, Bujanda L, Rodrigo M, Herreros-Villanueva M. Pharmacogenomic biomarkers for colorectal cancer treatment. CANCER TREATMENT COMMUNICATIONS 2015; 4:121-127. [DOI: 10.1016/j.ctrc.2015.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
|
23
|
Risk/benefit profile of panitumumab-based therapy in patients with metastatic colorectal cancer: evidence from five randomized controlled trials. Tumour Biol 2014; 35:10409-18. [PMID: 25053599 DOI: 10.1007/s13277-014-2354-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022] Open
Abstract
This study aims to evaluate the risk and benefit profiles of panitumumab-based therapy (PBT) in patients with metastatic colorectal cancer (mCRC). Relevant randomized controlled trials were identified by searching PubMed, Medline, EMBASE and Cochrane Library. Data on progression-free survival (PFS), overall survival (OS), all grade and severe (grade ≥3) adverse events were extracted and pooled to calculate hazard ratios (HRs) and risk ratios (RRs) with 95 % confidence intervals (CIs). Number needed to treat (NNT) for PFS and number needed to harm (NNH) for significantly changed toxicities were calculated. A total of 4,155 patients were included in the analysis. PBT significantly improved PFS (HRrandom = 0.66, 95 % CI = 0.45-0.95) but not OS (HRfixed = 0.93, 95 % CI = 0.83-1.04) when used in the subsequent-line setting. The effect on PFS was more evident in patients with wild-type KRAS (HRrandom = 0.64, 95 % CI = 0.47-0.87) and the NNT for PFS is 11 to 23at 1 year. PBT did not benefit patients when used in the first-line setting. In addition, PBT significantly increased the risk of skin toxicity, infections, diarrhea, dehydration, mucositis, hypokalemia, fatigue, hypomagnesemia, pulmonary embolism and paronychia. The NNHs for skin toxicity, diarrhea, infection, hypokalemia and mucositis are less than 23. In conclusion, when used in the subsequent-line setting, PBT can improve the disease progression, especially in mCRC patients with wild-type KRAS. Regarding the adverse events associated with the PBT, close monitoring and necessary preparations are recommended during the therapy.
Collapse
|
24
|
Monoclonal Antibodies in Cancer Therapy: Mechanisms, Successes and Limitations. W INDIAN MED J 2014; 63:650-4. [PMID: 25803383 DOI: 10.7727/wimj.2013.241] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/24/2014] [Indexed: 11/18/2022]
Abstract
Rituximab was the first chemotherapeutic monoclonal antibody (CmAb) approved for clinical use in cancer therapeutics in 1997 and has significantly improved the clinical outcomes in non-Hodgkin's lymphoma. Since then, numerous CmAbs have been developed and approved for the treatment of various haematologic and solid human cancers. In this review, the classification, efficacy and significantly reduced toxicity of CmAbs available for use in the United States of America are presented. Finally, the limitations of CmAbs and future considerations are explored.
Collapse
|
25
|
Chhatrala R, Thanavala Y, Iyer R. Targeted therapy in gastrointestinal malignancies. J Carcinog 2014; 13:4. [PMID: 24737952 PMCID: PMC3986534 DOI: 10.4103/1477-3163.127639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/15/2013] [Indexed: 12/13/2022] Open
Abstract
Increased understanding of cancer pathogenesis has identified several pathways that serve as potential targets for novel targeted agents in development. The selection of targeted cancer therapy based on biomarkers has instigated a new era of personalized medicine and changed the way we practice oncology. Many targeted agents are approved for treatment of gastrointestinal malignancies most targeting tumor angiogenesis, and many more are in different phases of development. Here we briefly summarize nine different targeted agents that are approved currently in the U.S. and several other agents currently being studied in various gastrointestinal cancers.
Collapse
Affiliation(s)
- Ravi Chhatrala
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Renuka Iyer
- Department of Medicine, Division of Medical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|