1
|
Essien M, Cooper ME, Gore A, Min TL, Risk BB, Sadigh G, Hu R, Hoch MJ, Weinberg BD. Interrater Agreement of BT-RADS for Evaluation of Follow-up MRI in Patients with Treated Primary Brain Tumor. AJNR Am J Neuroradiol 2024; 45:1308-1315. [PMID: 38684320 PMCID: PMC11392352 DOI: 10.3174/ajnr.a8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND PURPOSE The Brain Tumor Reporting and Data System (BT-RADS) is a structured radiology reporting algorithm that was introduced to provide uniformity in posttreatment primary brain tumor follow-up and reporting, but its interrater reliability (IRR) assessment has not been widely studied. Our goal is to evaluate the IRR among neuroradiologists and radiology residents in the use of BT-RADS. MATERIALS AND METHODS This retrospective study reviewed 103 consecutive MR studies in 98 adult patients previously diagnosed with and treated for primary brain tumor (January 2019 to February 2019). Six readers with varied experience (4 neuroradiologists and 2 radiology residents) independently evaluated each case and assigned a BT-RADS score. Readers were blinded to the original score reports and the reports from other readers. Cases in which at least 1 neuroradiologist scored differently were subjected to consensus scoring. After the study, a post hoc reference score was also assigned by 2 readers by using future imaging and clinical information previously unavailable to readers. The interrater reliabilities were assessed by using the Gwet AC2 index with ordinal weights and percent agreement. RESULTS Of the 98 patients evaluated (median age, 53 years; interquartile range, 41-66 years), 53% were men. The most common tumor type was astrocytoma (77%) of which 56% were grade 4 glioblastoma. Gwet index for interrater reliability among all 6 readers was 0.83 (95% CI: 0.78-0.87). The Gwet index for the neuroradiologists' group (0.84 [95% CI: 0.79-0.89]) was not statistically different from that for the residents' group (0.79 [95% CI: 0.72-0.86]) (χ2 = 0.85; P = .36). All 4 neuroradiologists agreed on the same BT-RADS score in 57 of the 103 studies, 3 neuroradiologists agreed in 21 of the 103 studies, and 2 neuroradiologists agreed in 21 of the 103 studies. Percent agreement between neuroradiologist blinded scores and post hoc reference scores ranged from 41%-52%. CONCLUSIONS A very good interrater agreement was found when tumor reports were interpreted by independent blinded readers by using BT-RADS criteria. Further study is needed to determine if this high overall agreement can translate into greater consistency in clinical care.
Collapse
Affiliation(s)
- Michael Essien
- From the Department of Radiology and Imaging Sciences (M.E., M.E.C., A.G., T.L.M., R.H., B.D.W.)
| | - Maxwell E Cooper
- From the Department of Radiology and Imaging Sciences (M.E., M.E.C., A.G., T.L.M., R.H., B.D.W.)
| | - Ashwani Gore
- From the Department of Radiology and Imaging Sciences (M.E., M.E.C., A.G., T.L.M., R.H., B.D.W.)
| | - Taejin L Min
- From the Department of Radiology and Imaging Sciences (M.E., M.E.C., A.G., T.L.M., R.H., B.D.W.)
| | - Benjamin B Risk
- Rollins School of Public Health (B.B.R.), Emory University, Atlanta, Georgia
| | - Gelareh Sadigh
- Rollins School of Public Health (B.B.R.), Emory University, Atlanta, Georgia
| | - Ranliang Hu
- From the Department of Radiology and Imaging Sciences (M.E., M.E.C., A.G., T.L.M., R.H., B.D.W.)
| | - Michael J Hoch
- Department of Radiological Sciences (G.S.), University of California Irvine, Orange, California
| | - Brent D Weinberg
- From the Department of Radiology and Imaging Sciences (M.E., M.E.C., A.G., T.L.M., R.H., B.D.W.),
| |
Collapse
|
2
|
Manzanares-Guzmán A, Lugo-Fabres PH, Camacho-Villegas TA. vNARs as Neutralizing Intracellular Therapeutic Agents: Glioblastoma as a Target. Antibodies (Basel) 2024; 13:25. [PMID: 38534215 DOI: 10.3390/antib13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Glioblastoma is the most prevalent and fatal form of primary brain tumors. New targeted therapeutic strategies for this type of tumor are imperative given the dire prognosis for glioblastoma patients and the poor results of current multimodal therapy. Previously reported drawbacks of antibody-based therapeutics include the inability to translocate across the blood-brain barrier and reach intracellular targets due to their molecular weight. These disadvantages translate into poor target neutralization and cancer maintenance. Unlike conventional antibodies, vNARs can permeate tissues and recognize conformational or cryptic epitopes due to their stability, CDR3 amino acid sequence, and smaller molecular weight. Thus, vNARs represent a potential antibody format to use as intrabodies or soluble immunocarriers. This review comprehensively summarizes key intracellular pathways in glioblastoma cells that induce proliferation, progression, and cancer survival to determine a new potential targeted glioblastoma therapy based on previously reported vNARs. The results seek to support the next application of vNARs as single-domain antibody drug-conjugated therapies, which could overcome the disadvantages of conventional monoclonal antibodies and provide an innovative approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Pavel H Lugo-Fabres
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Tanya A Camacho-Villegas
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| |
Collapse
|
3
|
Sverchinsky DV, Alhasan BA, Mikeladze MA, Lazarev VF, Kuznetcova LS, Morshneva AV, Nikotina AD, Ziewanah A, Koludarova LV, Starkova TY, Margulis BA, Guzhova IV. Autocrine regulation of tumor cell repopulation by Hsp70-HMGB1 alarmin complex. J Exp Clin Cancer Res 2023; 42:279. [PMID: 37880798 PMCID: PMC10598926 DOI: 10.1186/s13046-023-02857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Cancer recurrence is regulated by a variety of factors, among which is the material of dying tumor cells; it is suggested that remaining after anti-cancer therapy tumor cells receive a signal from proteins called damage-associated molecular patterns (DAMPs), one of which is heat shock protein 70 (Hsp70). METHODS Two models of tumor repopulation were employed, based on minimal population of cancer cells and application of conditioned medium (CM). To deplete the CMs of Hsp70 affinity chromatography on ATP-agarose and immunoprecipitation were used. Cell proliferation and the dynamics of cell growth were measured using MTT assay and xCELLigence technology; cell growth markers were estimated using qPCR and with the aid of ELISA for prostaglandin E detection. Immunoprecipitation followed by mass-spectrometry was employed to identify Hsp70-binding proteins and protein-protein interaction assays were developed to reveal the above protein complexes. RESULTS It was found that CM of dying tumor cells contains tumor regrowth-initiating factors and the removal of one of them, Hsp70, caused a reduction in the relapse-activating capacity. The pull out of Hsp70 alone using ATP-agarose had no effect on repopulation, while the immunodepletion of Hsp70 dramatically reduced its repopulation activity. Using proteomic and immunochemical approaches, we showed that Hsp70 in conditioned medium binds and binds another abundant alarmin, the High Mobility Group B1 (HMGB1) protein; the complex is formed in tumor cells treated with anti-cancer drugs, persists in the cytosol and is further released from dying tumor cells. Recurrence-activating power of Hsp70-HMGB1 complex was proved by the enhanced expression of proliferation markers, Ki67, Aurka and MCM-10 as well as by increase of prostaglandin E production and autophagy activation. Accordingly, dissociating the complex with Hsp70 chaperone inhibitors significantly inhibited the pro-growth effects of the above complex, in both in vitro and in vivo tumor relapse models. CONCLUSIONS These data led us to suggest that the abundance of the Hsp70-HMGB1 complex in the extracellular matrix may serve as a novel marker of relapse state in cancer patients, while specific targeting of the complex may be promising in the treatment of cancers with a high risk of recurrence.
Collapse
Affiliation(s)
- Dmitry V Sverchinsky
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Bashar A Alhasan
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Marina A Mikeladze
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Vladimir F Lazarev
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Liubov S Kuznetcova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Alisa V Morshneva
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Alina D Nikotina
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Amr Ziewanah
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
- University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Lidia V Koludarova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, Biocenter 2, Helsinki, 00790, Finland
| | - Tatiana Y Starkova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Boris A Margulis
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Irina V Guzhova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
4
|
Momeny M, Shamsaiegahkani S, Kashani B, Hamzehlou S, Esmaeili F, Yousefi H, Irani S, Mousavi SA, Ghaffari SH. Cediranib, a pan-inhibitor of vascular endothelial growth factor receptors, inhibits proliferation and enhances therapeutic sensitivity in glioblastoma cells. Life Sci 2021; 287:120100. [PMID: 34715143 DOI: 10.1016/j.lfs.2021.120100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
AIMS Glioblastoma (GB) is the most aggressive type of brain tumor. Rapid progression, active angiogenesis, and therapy resistance are major reasons for its high mortality. Elevated expression of members of the vascular endothelial growth factor (VEGF) family suggests that anti-VEGF therapies may be potent anti-glioma therapeutic approaches. Here, we evaluated the anti-tumor activity of cediranib, a pan inhibitor of the VEGF receptors, on GB cells. MATERIALS AND METHODS Anti-proliferative effects of cediranib were determined using MTT, crystal-violet staining, clonogenic and anoikis resistance assays. Apoptosis induction was assessed by Annexin V/PI staining and Western blot analysis and aggressive abilities of GB cells were investigated using cell migration/invasion assays and zymography. Small-interfering RNA (siRNA)-mediated Knockdown was used to study resistance mechanisms. The anti-proliferative and apoptotic effects of cediranib in combination with radiotherapy, temozolomide, bevacizumab were also evaluated using MTT, Annexin V/PI staining and Western blot analysis for cleaved PARP-1. KEY FINDINGS Cediranib reduced GB cell proliferation, induced apoptotic cell death and inhibited the aggressive abilities of GB cells. Cediranib synergistically increased the anti-proliferative and apoptotic effects of radiotherapy and bevacizumab and augmented the sensitivity of GB cells to temozolomide chemotherapy. In addition, knockdown of MET and AKT potentiated cediranib sensitivity in cediranib-resistant GB cells. SIGNIFICANCE These findings suggest that cediranib, alone or in combination with other therapeutics, is a promising strategy for the treatment of GB and provide a rationale for further investigation of the therapeutic potential of cediranib for the treatment of this fatal malignancy.
Collapse
Affiliation(s)
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Centre, New Orleans, USA
| | - Shiva Irani
- Department of Biology Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed A Mousavi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Shohayeb B, Mitchell N, Millard SS, Quinn LM, Ng DCH. Elevated levels of Drosophila Wdr62 promote glial cell growth and proliferation through AURKA signalling to AKT and MYC. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118713. [PMID: 32246948 DOI: 10.1016/j.bbamcr.2020.118713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
WD40-Repeat Protein 62 (WDR62) is required to maintain neural and glial cell populations during embryonic brain growth. Although elevated expression of WDR62 is frequently associated with several tumour types, potential effects of excess WDR62 on proliferative growth remain undefined. Here, we demonstrate that glia specific overexpression of WDR62 in Drosophila larval brains resulted in increased cell size, over-proliferation and increased brain volume, without overt disruption of tissue organization. We further demonstrate WDR62 promoted over-proliferation and brain overgrowth by activating AURKA and pAKT signalling to increase MYC function in glial cells. Together these data suggest WDR62 normally functions in the glial lineage to activate oncogenic signalling networks, promoting proliferation and brain overgrowth.
Collapse
Affiliation(s)
- Belal Shohayeb
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Queensland 4067, Australia
| | - Naomi Mitchell
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 260, Australia
| | - S Sean Millard
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Queensland 4067, Australia
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 260, Australia
| | - Dominic C H Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Queensland 4067, Australia.
| |
Collapse
|
6
|
The therapeutic potential of Aurora kinases targeting in glioblastoma: from preclinical research to translational oncology. J Mol Med (Berl) 2020; 98:495-512. [PMID: 32219470 DOI: 10.1007/s00109-020-01895-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma is the most common aggressive primary brain tumor. Standard care includes maximal safe surgical resection, radiation, and chemotherapy with temozolomide. However, the impact of this therapeutic approach on patient survival is disappointing and poor outcomes are frequently observed. Therefore, new therapeutic targets are needed to treat this potentially deadly tumor. Aurora kinases are one of today's most sought-after classes of therapeutic targets to glioblastoma therapy. They are a family of proteins composed of three members: Aurora-A, Aurora-B, and Aurora-C that play different roles in the cell division through regulation of chromosome segregation. Deregulation of these genes has been reported in glioblastoma and a progressive number of studies have shown that inhibition of these proteins could be a promising strategy for the treatment of this tumor. This review discusses the preclinical and early clinical findings on the potential use of the Aurora kinases as new targets for the treatment of glioblastoma. KEY MESSAGES: GBM is a very aggressive tumor with limited therapeutic options. Aurora kinases are a family of serine/threonine kinases implicated in GBM pathology. Aurora kinases are critical for glioblastoma cell growth, apoptosis, and chemoresistance. Inhibition of Aurora kinases has a synergistic or sensitizing effect with chemotherapy drugs, radiotherapy, or with other targeted molecules in GBM. Several Aurora kinase inhibitors are currently in clinical trials.
Collapse
|
7
|
Yu H, Li Z, Wang M. Expression and prognostic role of E2F transcription factors in high-grade glioma. CNS Neurosci Ther 2020; 26:741-753. [PMID: 32064771 PMCID: PMC7299000 DOI: 10.1111/cns.13295] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Patients with high‐grade glioma (HGG) suffered poor survival due to inherent or acquired therapeutic resistance and refractory recurrence. The outcome of HGG patients has improved little during the past decade. Therefore, molecular signatures are urgently needed for improving diagnosis, survival prediction and identification of therapeutic targets for HGG. E2F transcription factors (E2Fs), a family of transcription factors recognized as master regulators of cell proliferation, have been found to be involved in the pathogenesis of various tumor types. Aims To investigate the expression of E2Fs and their prognosis value in high‐grade glioma (HGG). Results Expression of E2Fs was analyzed in 394 HGG samples from TCGA dataset. E2Fs were generally expressed in HGG. Except for E2F3 and E2F5, expression of E2Fs was significantly upregulated and linked with grade progression. E2F1, E2F2, E2F7, and E2F8 were highly correlated with aggressive proliferation oncogenes, as well as potential therapeutic resistance oncogenes. Elevated E2Fs (not E2F3) were associated with adverse tumor features and poorer outcome. E2F7 and E2F8 exhibited superior outcome prediction performance compared with other E2Fs. Additionally, E2F7 and E2F8 independently predicted poorer survival in HGG patients. Gene set enrichment analysis identified a variety of critical oncogenic pathways that were tightly associated with E2F7 or E2F8, including epithelial‐mesenchymal transition, NFκB, STAT3, angiogenesis pathways. Furthermore, elevated expression of E2F7 indicated worse therapeutic response of HGG to irradiation and silencing of E2F7 conferred higher cell‐killing effect when combined with irradiation treatment. Mechanically, E2F7 directly regulates the transcriptional activity of EZH2 via binding at the corresponding promoter area. Conclusions E2Fs (except for E2F3 and E2F5) are highly expressed in HGG and indicate adverse outcome. E2F7 and E2F8 were identified as novel potential prognostic markers in HGG. E2F7 was further validated to be closely associated with radioresistance of HGG and a critical transcriptional regulator of EZH2.
Collapse
Affiliation(s)
- Hai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijin Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div 2018; 13:7. [PMID: 30250494 PMCID: PMC6146527 DOI: 10.1186/s13008-018-0040-6] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aurora kinases are serine/threonine kinases essential for the onset and progression of mitosis. Aurora members share a similar protein structure and kinase activity, but exhibit distinct cellular and subcellular localization. AurA favors the G2/M transition by promoting centrosome maturation and mitotic spindle assembly. AurB and AurC are chromosome-passenger complex proteins, crucial for chromosome binding to kinetochores and segregation of chromosomes. Cellular distribution of AurB is ubiquitous, while AurC expression is mainly restricted to meiotically-active germ cells. In human tumors, all Aurora kinase members play oncogenic roles related to their mitotic activity and promote cancer cell survival and proliferation. Furthermore, AurA plays tumor-promoting roles unrelated to mitosis, including tumor stemness, epithelial-to-mesenchymal transition and invasion. In this review, we aim to understand the functional interplay of Aurora kinases in various types of human cells, including tumor cells. The understanding of the functional diversity of Aurora kinases could help to evaluate their relevance as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Estelle Willems
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Matthias Dedobbeleer
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Marina Digregorio
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Arnaud Lombard
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,2Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
9
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Goffart N, Lumapat PN, Lambert J, Van den Ackerveken P, Szpakowska M, Chevigné A, Scholtes F, Rogister B. Aurora A plays a dual role in migration and survival of human glioblastoma cells according to the CXCL12 concentration. Oncogene 2018; 38:73-87. [PMID: 30082913 PMCID: PMC6755987 DOI: 10.1038/s41388-018-0437-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
Primary glioblastoma is the most frequent human brain tumor in adults and is generally fatal due to tumor recurrence. We previously demonstrated that glioblastoma-initiating cells invade the subventricular zones and promote their radio-resistance in response to the local release of the CXCL12 chemokine. In this work, we show that the mitotic Aurora A kinase (AurA) is activated through the CXCL12–CXCR4 pathway in an ERK1/2-dependent manner. Moreover, the CXCL12–ERK1/2 signaling induces the expression of Ajuba, the main cofactor of AurA, which allows the auto-phosphorylation of AurA. We show that AurA contributes to glioblastoma cell survival, radio-resistance, self-renewal, and proliferation regardless of the exogenous stimulation with CXCL12. On the other hand, AurA triggers the CXCL12-mediated migration of glioblastoma cells in vitro as well as the invasion of the subventricular zone in xenograft experiments. Moreover, AurA regulates cytoskeletal proteins (i.e., Actin and Vimentin) and favors the pro-migratory activity of the Rho-GTPase CDC42 in response to CXCL12. Altogether, these results show that AurA, a well-known kinase of the mitotic machinery, may play alternative roles in human glioblastoma according to the CXCL12 concentration.
Collapse
Affiliation(s)
- Estelle Willems
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Matthias Dedobbeleer
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Nicolas Goffart
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Jeremy Lambert
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | | | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Felix Scholtes
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium. .,Department of Neurology, CHU of Liège, Liège, Belgium.
| |
Collapse
|