1
|
Faiza N, Welch R, Patteson A. Substrate stiffness modulates collective colony expansion of the social bacterium Myxococcus xanthus. APL Bioeng 2025; 9:016104. [PMID: 39845738 PMCID: PMC11752065 DOI: 10.1063/5.0226619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Many cellular functions depend on the physical properties of the cell's environment. Many bacteria have different types of surface appendages to enable adhesion and motion on various surfaces. Myxococcus xanthus is a social soil bacterium with two distinctly regulated modes of surface motility, termed the social motility mode, driven by type IV pili, and the adventurous motility mode, based on focal adhesion complexes. How bacteria sense different surfaces and subsequently coordinate their collective motion remains largely unclear. Using polyacrylamide hydrogels of tunable stiffness, we found that wild type M. xanthus spreads faster on stiffer substrates. Here, we show that using motility mutants that disrupt adventurous motility suppresses this substrate stiffness response, suggesting focal adhesion-based adventurous motility is substrate stiffness dependent. We also show that modifying surface adhesion by adding adhesive ligands, chitosan, increases the amount of M. xanthus flairs, a characteristic feature of adventurous motility. Taken together, we hypothesize a central role of M. xanthus adventurous motility as a driving mechanism for surface and surface stiffness sensing.
Collapse
|
2
|
Abstract
The motility mechanism of certain prokaryotes has long been a mystery, since their motion, known as gliding, involves no external appendages. The physical principles behind gliding still remain poorly understood. Using myxobacteria as an example of such organisms, we identify here the physical principles behind gliding motility and develop a theoretical model that predicts a 2-regime behavior of the gliding speed as a function of the substrate stiffness. Our theory describes the elasto-capillary-hydrodynamic interactions between the membrane of the bacteria, the slime it secretes, and the soft substrate underneath. Defining gliding as the horizontal translation under zero net force, we find the 2-regime behavior is due to 2 distinct mechanisms of motility thrust. On mildly soft substrates, the thrust arises from bacterial shape deformations creating a flow of slime that exerts a pressure along the bacterial length. This pressure in conjunction with the bacterial shape provides the necessary thrust for propulsion. On very soft substrates, however, we show that capillary effects must be considered that lead to the formation of a ridge at the slime-substrate-air interface, thereby creating a thrust in the form of a localized pressure gradient at the bacterial leading edge. To test our theory, we perform experiments with isolated cells on agar substrates of varying stiffness and find the measured gliding speeds in good agreement with the predictions from our elasto-capillary-hydrodynamic model. The mechanisms reported here serve as an important step toward an accurate theory of friction and substrate-mediated interactions between bacteria proliferating in soft media.
Collapse
|
3
|
Nutrient-limited growth with non-linear cell diffusion as a mechanism for floral pattern formation in yeast biofilms. J Theor Biol 2018; 448:122-141. [DOI: 10.1016/j.jtbi.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
|
4
|
Patra P, Kissoon K, Cornejo I, Kaplan HB, Igoshin OA. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production. PLoS Comput Biol 2016; 12:e1005010. [PMID: 27362260 PMCID: PMC4928896 DOI: 10.1371/journal.pcbi.1005010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. Collective motility is a key mechanism bacteria use to self-organize into multicellular structures and to adapt to various environments. An important example of such behavior is social (S) motility in the gram-negative bacterium Myxococcus xanthus. S-motile cells are restricted to movement in groups and do not move as individual cells. S-motility is powered by type IV pili (TFP)–multi-subunit filaments, which extrude from the cell poles, adhere to the substrate and retract, pulling the cell forward. TFP retraction or adhesion is suggested to be triggered by extracellular exopolysaccharides (EPS) deposited by cells on the substrate. As individual cells synthesize both pili and EPS, it is unclear why S-motile cells only exhibit group movement. Moreover, the experimentally observed initial cell-density dependence of S-motility remains unexplained. To understand these phenomena, we developed a mathematical model for the colony expansion of S-motile cells. Our model hypothesizes that the EPS level regulates the TFP activity that initiates collective cell movements. With this assumption, the model quantitatively matches the density-dependent expansion rate. Moreover, the model predicts two phases during colony expansion: an initial density-dependent lag phase with a slow expansion rate, followed by a faster expansion phase with a density-independent rate. These model predictions were confirmed by long-term colony expansion experiments.
Collapse
Affiliation(s)
- Pintu Patra
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Kimberley Kissoon
- Department of Natural Sciences, Del Mar College, Corpus Christi, Texas, United States of America
| | - Isabel Cornejo
- Department of Natural Sciences, University of Houston-Downtown, Houston, Texas, United States of America
| | - Heidi B. Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Bonilla LL, Glavan A, Marquina A. Wavelength selection of rippling patterns in myxobacteria. Phys Rev E 2016; 93:012412. [PMID: 26871106 DOI: 10.1103/physreve.93.012412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 11/07/2022]
Abstract
Rippling patterns of myxobacteria appear in starving colonies before they aggregate to form fruiting bodies. These periodic traveling cell density waves arise from the coordination of individual cell reversals, resulting from an internal clock regulating them and from contact signaling during bacterial collisions. Here we revisit a mathematical model of rippling in myxobacteria due to Igoshin et al. [Proc. Natl. Acad. Sci. USA 98, 14913 (2001)PNASA60027-842410.1073/pnas.221579598 and Phys. Rev. E 70, 041911 (2004)PLEEE81539-375510.1103/PhysRevE.70.041911]. Bacteria in this model are phase oscillators with an extra internal phase through which they are coupled to a mean field of oppositely moving bacteria. Previously, patterns for this model were obtained only by numerical methods, and it was not possible to find their wave number analytically. We derive an evolution equation for the reversal point density that selects the pattern wave number in the weak signaling limit, shows the validity of the selection rule by solving numerically the model equations, and describes other stable patterns in the strong signaling limit. The nonlocal mean-field coupling tends to decohere and confine patterns. Under appropriate circumstances, it can annihilate the patterns leaving a constant density state via a nonequilibrium phase transition reminiscent of destruction of synchronization in the Kuramoto model.
Collapse
Affiliation(s)
- L L Bonilla
- G. Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, Avda. Universidad 30; E-28911 Leganés, Spain
| | - A Glavan
- G. Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, Avda. Universidad 30; E-28911 Leganés, Spain
| | - A Marquina
- Departmento de Matemática Aplicada, Universidad de Valencia, Avda. Dr. Moliner 50; E-46100 Burjassot-Valencia, Spain
| |
Collapse
|
6
|
Janulevicius A, van Loosdrecht M, Picioreanu C. Short-range guiding can result in the formation of circular aggregates in myxobacteria populations. PLoS Comput Biol 2015; 11:e1004213. [PMID: 25928112 PMCID: PMC4415783 DOI: 10.1371/journal.pcbi.1004213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/25/2015] [Indexed: 12/02/2022] Open
Abstract
Myxobacteria are social bacteria that upon starvation form multicellular fruiting bodies whose shape in different species can range from simple mounds to elaborate tree-like structures. The formation of fruiting bodies is a result of collective cell movement on a solid surface. In the course of development, groups of flexible rod-shaped cells form streams and move in circular or spiral patterns to form aggregation centers that can become sites of fruiting body formation. The mechanisms of such cell movement patterns are not well understood. It has been suggested that myxobacterial development depends on short-range contact-mediated interactions between individual cells, i.e. cell aggregation does not require long-range signaling in the population. In this study, by means of a computational mass-spring model, we investigate what types of short-range interactions between cells can result in the formation of streams and circular aggregates during myxobacterial development. We consider short-range head-to-tail guiding between individual cells, whereby movement direction of the head of one cell is affected by the nearby presence of the tail of another cell. We demonstrate that stable streams and circular aggregates can arise only when the trailing cell, in addition to being steered by the tail of the leading cell, is able to speed up to catch up with it. It is suggested that necessary head-to-tail interactions between cells can arise from physical adhesion, response to a diffusible substance or slime extruded by cells, or pulling by motility engine pili. Finally, we consider a case of long-range guiding between cells and show that circular aggregates are able to form without cells increasing speed. These findings present a possibility to discriminate between short-range and long-range guiding mechanisms in myxobacteria by experimentally measuring distribution of cell speeds in circular aggregates. Myxobacteria are social bacteria that upon starvation form multicellular fruiting bodies whose shape in different species can range from simple mounds to elaborate tree-like structures. The formation of fruiting bodies is a result of collective cell movement on a solid surface. Since collective cell motility during biological morphogenesis is also common in higher organisms, myxobacteria serve as a relatively simple model organism to study multicellular movement, organization and development. In the course of myxobacterial development, groups of flexible rod-shaped cells form streams and move in circular or spiral patterns to form aggregation centers that can become sites of fruiting body formation. The mechanisms of such cell movement patterns are not well understood. In this study, by means of a computational mass-spring model, we demonstrate that the formation of streams and circular aggregates during myxobacterial development can be explained by short-range head-to-tail guiding between individual cells, whereby movement direction of the head of one cell is affected by the nearby presence of the tail of another cell. We suggest that such interactions between cells can result from physical adhesion, response to a diffusible substance or slime extruded by cells, or the action of cell motility engine.
Collapse
Affiliation(s)
- Albertas Janulevicius
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- * E-mail:
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Cristian Picioreanu
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
7
|
Wu Y, Jiang Y, Kaiser AD, Alber M. Self-organization in bacterial swarming: lessons from myxobacteria. Phys Biol 2011; 8:055003. [PMID: 21832807 DOI: 10.1088/1478-3975/8/5/055003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
When colonizing surfaces, many bacteria are able to self-organize into an actively expanding biofilm, in which millions of cells move smoothly and orderly at high densities. This phenomenon is known as bacterial swarming. Despite the apparent resemblance to patterns seen in liquid crystals, the dynamics of bacterial swarming cannot be explained by theories derived from equilibrium statistical mechanics. To understand how bacteria swarm, a central question is how order emerges in dense and initially disorganized populations of bacterial cells. Here we briefly review recent efforts, with integrated computational and experimental approaches, in addressing this question.
Collapse
Affiliation(s)
- Yilin Wu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
8
|
Hendrata M, Birnir B. Dynamic-energy-budget-driven fruiting-body formation in myxobacteria. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:061902. [PMID: 20866435 DOI: 10.1103/physreve.81.061902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 03/11/2010] [Indexed: 05/29/2023]
Abstract
We develop an interacting particle model to simulate the life cycle of myxobacteria, which consists of two main stages--the swarming stage and the development (fruiting body formation) stage. As experiments have shown that the phase transition from swarming to development stage is triggered by starvation, we incorporate into the simulation a system of ordinary differential equations (ODEs) called the dynamic energy budget, which controls the uptake and use of energy by individuals. This inclusion successfully automates the phase transition in our simulation. Only one parameter, namely, the food density, controls the entire simulation of the life cycle.
Collapse
Affiliation(s)
- M Hendrata
- Department of Mathematics, California State University, 5151 State University Drive, Los Angeles, California 90032, USA.
| | | |
Collapse
|
9
|
Díaz C, Schilardi PL, dos Santos Claro PC, Salvarezza RC, Fernández Lorenzo de Mele MA. Submicron trenches reduce the Pseudomonas fluorescens colonization rate on solid surfaces. ACS APPLIED MATERIALS & INTERFACES 2009; 1:136-143. [PMID: 20355765 DOI: 10.1021/am8000677] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bacterial adhesion and spreading on biomaterials are considered key features of pathogenicity. Roughness and topography of the substrate have been reported to affect bacterial adhesion, but little is known about their effect on spreading. Submicron row and channel tuning with bacterial diameter (S2) were designed to test bacterial motility on these surfaces. Random nanometer-sized structures (S1) were used as controls. Optical microscopy and AFM were employed to detect biological and surface pattern details in the micro- and nanoscale, respectively. Results showed that motility strategies (flagella orientation, elongation, aggregation in rafts, formation of network structures, and development of a bacterial frontier) were affected by the presence of submicropatterns. Importantly, the rate of bacterial spreading on S2 was significantly reduced and influenced by the orientation of the submicropatterns. Consequently, submicroengineered substrates could be employed as a tool to downgrade bacterial colonization. Such patterns could impact on the design of proper engineered structures to control biofilm spreading on solid surfaces.
Collapse
Affiliation(s)
- Carolina Díaz
- Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
| | | | | | | | | |
Collapse
|
10
|
Wu Y, Jiang Y, Kaiser D, Alber M. Social interactions in myxobacterial swarming. PLoS Comput Biol 2007; 3:e253. [PMID: 18166072 PMCID: PMC2230681 DOI: 10.1371/journal.pcbi.0030253] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 11/13/2007] [Indexed: 11/29/2022] Open
Abstract
Swarming, a collective motion of many thousands of cells, produces colonies that rapidly spread over surfaces. In this paper, we introduce a cell-based model to study how interactions between neighboring cells facilitate swarming. We chose to study Myxococcus xanthus, a species of myxobacteria, because it swarms rapidly and has well-defined cell–cell interactions mediated by type IV pili and by slime trails. The aim of this paper is to test whether the cell contact interactions, which are inherent in pili-based S motility and slime-based A motility, are sufficient to explain the observed expansion of wild-type swarms. The simulations yield a constant rate of swarm expansion, which has been observed experimentally. Also, the model is able to quantify the contributions of S motility and A motility to swarming. Some pathogenic bacteria spread over infected tissue by swarming. The model described here may shed some light on their colonization process. Many bacteria are able to spread rapidly over the surface using a strategy called swarming. When the cells cover a surface at high density and compete with each other for nutrients, swarming permits them to maintain rapid growth at the swarm edge. Swarming with flagella has been investigated for many years, and much has been learned about its regulation. Nevertheless, its choreography, which is somewhat related to the counterflow of pedestrians on a city sidewalk, has remained elusive. It is the bacterial equivalent of dancing toward the exit in a crowd of moving bodies that usually are in close contact. Myxococcus xanthus expands its swarms at 1.6 μm/min, about a third the speed of individual cells gliding over the same surface. Each cell has pilus engines at its front end and slime secretion engines at its rear. Using the known mechanics of these engines and the ways they are coordinated, we have developed a cell-based model to study the role of social interactions in bacterial swarming. The model is able to quantify the contributions of individual motility engines to swarming. It also shows that microscopic social interactions help to form the ordered collective motion observed in swarms.
Collapse
Affiliation(s)
- Yilin Wu
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Yi Jiang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Mark Alber
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Mathematics, University of Notre Dame, Notre Dame, Indiana, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|