1
|
Guo J, Wu B, Xiao F, Cheng K, Lei T. Clinical outcomes of Nice knot-assisted locking plate for preserving periosteum internal fixation in comminuted clavicle fractures: A retrospective study. J Int Med Res 2025; 53:3000605251328617. [PMID: 40215412 PMCID: PMC12033807 DOI: 10.1177/03000605251328617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/03/2025] [Indexed: 04/29/2025] Open
Abstract
IntroductionClavicular fractures, particularly comminuted fractures, are common injuries that can affect shoulder function and upper limb mobility. The management of these fractures, especially using surgical approaches and fixation methods, remains a key area of clinical focus. Preserving the periosteum during surgery may improve fracture healing and reduce complications. This study explored the clinical efficacy of a periosteum-preserving surgical technique combined with a Nice knot-assisted locking plate for treating comminuted clavicular fractures.MethodsA total of 85 patients with comminuted clavicular fractures were included in this retrospective study. According to the Allman classification, 56 (65.9%) cases were type IC, 19 (22.4%) were type II, 9 (10.9%) were type III, and 1 (1.1%) involved comminuted fractures across the entire clavicle. All patients underwent surgical treatment using a periosteum-preserving approach combined with a Nice knot-assisted locking plate. Fracture healing time, upper limb function (measured via Constant-Murley score and disabilities of the arm, shoulder, and hand questionnaire), and postoperative complications were assessed 6 and 12 months postoperatively.ResultsThe median healing time was 13 weeks, with no cases of nonunion reported. At 6 months postoperatively, the Constant-Murley and disabilities of the arm, shoulder, and hand scores were excellent. Although a statistically significant difference (P < 0.05) was observed in these scores between 6 and 12 months, all patients reported satisfactory recovery of shoulder function and upper limb mobility. No significant differences (P > 0.05) in fracture healing time or upper limb function recovery were observed across different types of clavicular fractures. Six (7.1%) patients experienced temporary numbness in the subclavian region, which gradually resolved by the final follow-up.ConclusionThe periosteum-preserving approach with Nice knot-assisted locking plate fixation proved to be an effective and reliable treatment for comminuted clavicular fractures. The technique was associated with favorable healing times, excellent functional outcomes, and low complication rates. Preservation of the periosteum and soft tissue during surgery may considerably reduce intraoperative trauma and improve postsurgical recovery. Further studies with larger sample sizes and longer follow-up periods are needed to confirm the long-term benefits of this approach.
Collapse
Affiliation(s)
- Jingquan Guo
- Department of Orthopedic Surgery, The Wuhan Fourth Hospital, Wuhan City, Hubei Province, China
| | - Bo Wu
- Department of Orthopedic Surgery, The Wuhan Fourth Hospital, Wuhan City, Hubei Province, China
| | - Fei Xiao
- Department of Orthopedic Surgery, The Wuhan Fourth Hospital, Wuhan City, Hubei Province, China
| | - Keke Cheng
- Department of Orthopedic Surgery, The Wuhan Fourth Hospital, Wuhan City, Hubei Province, China
| | - Tianrun Lei
- Department of Orthopedic Surgery, The Wuhan Fourth Hospital, Wuhan City, Hubei Province, China
| |
Collapse
|
2
|
Hedayatzadeh Razavi A, Nafisi N, Velasquez-Hammerle M, Shariyate MJ, Khak M, Mirahmadi A, McNichol M, Rodrogiuez EK, Nazarian A. Advances in computational modeling of cytokine and growth factor dynamics in bone healing: a scoping review. Biomech Model Mechanobiol 2025:10.1007/s10237-025-01938-7. [PMID: 40085288 DOI: 10.1007/s10237-025-01938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
Bone healing is a complex process regulated by intricate biological and mechanical factors and spatially varied regions over time. This scoping review synthesizes current computational models that incorporate cytokines and growth factors, examining their role in bone healing. Through a systematic analysis of 71 studies, this review identifies and categorizes the modeling methodologies used, including mathematical, finite element, agent-based, mechanobiological, pharmacobiological, and hybrid approaches. The findings highlight the predominant use of mathematical models while noting a recent shift toward more sophisticated techniques like finite element and agent-based models. Key cytokines and growth factors, such as TGF-β, RANK-RANKL-OPG, and PTH, are repeatedly used, underscoring their essential roles in regulating cellular processes. This review also analyzes parameter selection and validation strategies, identifying gaps in current practices and emphasizing the need for high-quality experimental validation to improve model reliability. Some bibliometric analyses provide insights into citation networks and keyword co-occurrence, illustrating influential studies in the field and central themes. The findings offer a foundation for future research to enhance model accuracy, aiming toward more predictive and clinically relevant models accounting for biology and mechanics in bone healing.
Collapse
Affiliation(s)
- Ahmad Hedayatzadeh Razavi
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nazanin Nafisi
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria Velasquez-Hammerle
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohammad Javad Shariyate
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohammad Khak
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alireza Mirahmadi
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Megan McNichol
- Knowledge Services, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Edward K Rodrogiuez
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA.
- Department of Mechanical Engineering, Boston University, Boston, MA, USA.
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia.
| |
Collapse
|
3
|
Quinn C, Van Gaalen K, McHugh PE, Kopp A, Vaughan TJ. A multi-domain computational framework investigating the short- and long-term viability of bioabsorbable magnesium fixation for tibial fractures. Comput Biol Med 2025; 184:109444. [PMID: 39608034 DOI: 10.1016/j.compbiomed.2024.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
This study presents a multi-domain computational framework to investigate the long-term performance of permanent and bioabsorbable magnesium fixation devices in orthopaedic fracture applications. The framework integrates a coupled model for bone fracture healing and remodeling, with an enhanced surface-based corrosion model to predict the performance of bioabsorbable magnesium devices. It was found that plated fracture fixation enabled fracture healing outcomes compare to non-plated models by facilitating direct fracture healing. During the fracture healing phase, it was found that the stiff titanium plate provided a better healing response compared to the less stiff bioabsorbable magnesium plates. However, in the longer-term remodeling phase, the titanium plate showed evidence of stress-shielding and inhibited bone remodeling. On the other hand, the magnesium plates showed that there was continued remodeling, which meant that the bone tissue gradually returned to the pre-fracture stress state. While the corrosion rate and pit severity heavily influenced the mechanical support provided by the corroding magnesium fixator, the results showed that fixation was only required to provide mechanical stability to the fracture region for approximately the first 30 days for successful fracture union to occur. This coupled computational framework provides a platform to investigate the role of a wide range of magnesium fixation devices and their design and optimisation in orthopaedic applications.
Collapse
Affiliation(s)
- Conall Quinn
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, National University of Ireland Galway, Ireland.
| | - Kerstin Van Gaalen
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, National University of Ireland Galway, Ireland; Meotec GmbH, 52068, Aachen, Germany
| | - Peter E McHugh
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, National University of Ireland Galway, Ireland
| | | | - Ted J Vaughan
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, National University of Ireland Galway, Ireland.
| |
Collapse
|
4
|
Zhu Y, Gu H, Yang J, Li A, Hou L, Zhou M, Jiang X. An Injectable silk-based hydrogel as a novel biomineralization seedbed for critical-sized bone defect regeneration. Bioact Mater 2024; 35:274-290. [PMID: 38370865 PMCID: PMC10873665 DOI: 10.1016/j.bioactmat.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
The healing process of critical-sized bone defects urges for a suitable biomineralization environment. However, the unsatisfying repair outcome usually results from a disturbed intricate milieu and the lack of in situ mineralization resources. In this work, we have developed a composite hydrogel that mimics the natural bone healing processes and serves as a seedbed for bone regeneration. The oxidized silk fibroin and fibrin are incorporated as rigid geogrids, and amorphous calcium phosphate (ACP) and platelet-rich plasma serve as the fertilizers and loam, respectively. Encouragingly, the seedbed hydrogel demonstrates excellent mechanical and biomineralization properties as a stable scaffold and promotes vascularized bone regeneration in vivo. Additionally, the seedbed serves a succinate-like function via the PI3K-Akt signaling pathway and subsequently orchestrates the mitochondrial calcium uptake, further converting the exogenous ACP into endogenous ACP. Additionally, the seedbed hydrogel realizes the succession of calcium resources and promotes the evolution of the biotemplate from fibrin to collagen. Therefore, our work has established a novel silk-based hydrogel that functions as an in-situ biomineralization seedbed, providing a new insight for critical-sized bone defect regeneration.
Collapse
Affiliation(s)
- Yuhui Zhu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| | - Hao Gu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| | - Jiawei Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| | - Anshuo Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| | - Lingli Hou
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 115 Jinzun Road, Shanghai, 200125, China
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No. 115 Jinzun Road, Shanghai, 200125, China
- National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 115 Jinzun Road, Shanghai 200125, China
| |
Collapse
|
5
|
Dang Y, Zhang Y, Jian M, Luo P, Anwar N, Ma Y, Zhang D, Wang X. Advances of Blood Coagulation Factor XIII in Bone Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:591-604. [PMID: 37166415 DOI: 10.1089/ten.teb.2023.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The biologic process of bone healing is complicated, involving a variety of cells, cytokines, and growth factors. As a result of bone damage, the activation of a clotting cascade leads to hematoma with a high osteogenic potential in the initial stages of healing. A major factor involved in this course of events is clotting factor XIII (FXIII), which can regulate bone defect repair in different ways during various stages of healing. Autografts and allografts often have defects in clinical practice, making the development of advanced materials that support bone regeneration a critical requirement. Few studies, however, have examined the promotion of bone healing by FXIII in combination with biomaterials, in particular, its effect on blood coagulation and osteogenesis. Therefore, we mainly summarized the role of FXIII in promoting bone regeneration by regulating the extracellular matrix and type I collagen, bone-related cells, angiogenesis, and platelets, and described the research progress of FXIII = related biomaterials on osteogenesis. This review provides a reference for investigators to explore the mechanism by which FXIII promotes bone healing and the combination of FXIII with biomaterials to achieve targeted bone tissue repair.
Collapse
Affiliation(s)
- Yi Dang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Minghui Jian
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Peng Luo
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Tissue Engineering, The Fourth Military Medical University, Xian, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Laubach M, Bessot A, McGovern J, Saifzadeh S, Gospos J, Segina DN, Kobbe P, Hildebrand F, Wille ML, Bock N, Hutmacher DW. An in vivo study to investigate an original intramedullary bone graft harvesting technology. Eur J Med Res 2023; 28:349. [PMID: 37715198 PMCID: PMC10503043 DOI: 10.1186/s40001-023-01328-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Harvesting bone graft (BG) from the intramedullary canal to treat bone defects is largely conducted using the Reamer-Irrigator-Aspirator (RIA) system. The RIA system uses irrigation fluid during harvesting, which may result in washout of osteoinductive factors. Here, we propose a new harvesting technology dedicated to improving BG collection without the potential washout effect of osteoinductive factors associated with irrigation fluid. This novel technology involves the conceptual approach of first aspirating the bone marrow (BM) with a novel aspirator prototype, followed by reaming with standard reamers and collecting the bone chips with the aspirator (reaming-aspiration method, R-A method). The aim of this study was to assess the harvesting efficacy and osteoinductive profile of the BG harvested with RIA 2 system (RIA 2 group) compared to the novel harvesting concept (aspirator + R-A method, ARA group). METHODS Pre-planning computed tomography (CT) imaging was conducted on 16 sheep to determine the femoral isthmus canal diameter. In this non-recovery study, sheep were divided into two groups: RIA 2 group (n = 8) and ARA group (n = 8). We measured BG weight collected from left femur and determined femoral cortical bone volume reduction in postoperative CT imaging. Growth factor and inflammatory cytokine amounts of the BGs were quantified using enzyme-linked immunosorbent assay (ELISA) methods. RESULTS The use of the stand-alone novel aspirator in BM collection, and in harvesting BG when the aspirator is used in conjunction with sequential reaming (R-A method) was proven feasible. ELISA results showed that the collected BG contained relevant amounts of growth factors and inflammatory cytokines in both the RIA 2 and the ARA group. CONCLUSIONS Here, we present the first results of an innovative concept for harvesting intramedullary BG. It is a prototype of a novel aspirator technology that enables the stepwise harvesting of first BM and subsequent bone chips from the intramedullary canal of long bones. Both the BG collected with the RIA 2 system and the aspirator prototype had the capacity to preserve the BG's osteoinductive microenvironment. Future in vivo studies are required to confirm the bone regenerative capacity of BG harvested with the innovative harvesting technology.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Agathe Bessot
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
| | - Jacqui McGovern
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Siamak Saifzadeh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, 4032, Australia
| | - Jonathan Gospos
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Daniel N Segina
- Department of Orthopaedics, Holmes Regional Trauma Center, Melbourne, FL, USA
| | - Philipp Kobbe
- Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost, Halle, Germany
- Department of Trauma and Reconstructive Surgery, University Hospital Halle, Halle, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Marie-Luise Wille
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| |
Collapse
|
7
|
Lu X, Li J, Zhou B, Lu X, Li W, Ouyang J. Taohong Siwu Decoction enhances human bone marrow mesenchymal stem cells proliferation, migration and osteogenic differentiation via VEGF-FAK signaling in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116203. [PMID: 36682599 DOI: 10.1016/j.jep.2023.116203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (THSWD) is a conventional traditional Chinese prescription aiming at promoting blood circulation and alleviating blood stasis. It is widely prescribed in instances of ischemic strokes, cardiovascular diseases, osteoporosis and bone fracture. However, its molecular functions in bone formation remain uncharacterized. AIM OF STUDY This study aims to explore the potential effects of THSWD treatment on human bone marrow mesenchymal stem cells (BMSCs) proliferation, osteogenic differentiation, and migration. MATERIALS AND METHODS BMSCs undergo osteogenic, adipogenic, and chondrogenic differentiation to determine cell stemness. BMSCs were treated with low dose (200 μg/ml), medium dose (400 μg/ml) and high dose (600 μg/ml) THSWD. The cell viability was determined by CCK-8 assays, the osteogenic differentiation ability was determined by alizarin red staining and ALP staining, and cell migration was determined by wound healing and transwell assays. The effect of THSWD on the vascular endothelial growth factor (VEGF)/focal adhesion kinase (FAK) pathway was determined by immunoblotting. RESULTS THSWD time-dependently and dose-dependently promoted BMSC viability. Moreover, THSWD also promoted BMSC osteogenic differentiation and migration. As opposed to THSWD, VEGF receptor inhibitor Bevacizumab suppressed BMSC osteogenic differentiation and migration. In BMSCs that have been co-treated with THSWD and Bevacizumab, THSWD effects on BMSC functions were partially eliminated by Bevacizumab. Moreover, THSWD treatment boosted VEGF content in the supernatant and was conducive to the phosphorylation of FAK and Src, whereas Bevacizumab exerted opposite effects; similarly, Bevacizumab partially abolished THSWD effects on VEGF and FAK (Tyr397) and Src (Tyr418) phosphorylation. CONCLUSION THSWD enhances the capacities of BMSCs to proliferate, differentiate, and migrate, possibly through VEGF and the FAK-Src, thereby improving fracture healing.
Collapse
Affiliation(s)
- Xiaolong Lu
- Department of Orthopedics, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, Hunan Province, PR China.
| | - Juan Li
- Department of Orthopedics, Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, Hunan Province, PR China
| | - Biao Zhou
- Department of Orthopedics, Wangjing Hospital of Chinese Academy of Chinese Medical Science, Beijing, 100102, PR China; Department of Orthopedics, Xiangtan Hospital Affiliated to University of South China, Xiangtan, 411101, Hunan Province, PR China
| | - Xuedi Lu
- Department of Orthopedics, Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, Hunan Province, PR China
| | - Wei Li
- Department of Orthopedics, Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, Hunan Province, PR China
| | - Jian Ouyang
- Department of Orthopedics, Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, Hunan Province, PR China
| |
Collapse
|
8
|
Woloszyk A, Tuong ZK, Perez L, Aguilar L, Bankole AI, Evans CH, Glatt V. Fracture hematoma micro-architecture influences transcriptional profile and plays a crucial role in determining bone healing outcomes. BIOMATERIALS ADVANCES 2022; 139:213027. [PMID: 35882120 DOI: 10.1016/j.bioadv.2022.213027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The hematoma that forms between broken fragments of bone serves as a natural fibrin scaffold, and its removal from the defect site delays bone healing. The hypothesis of this study is that the microarchitectural and mechanical properties of the initially formed hematoma has a significant effect on the regulation of the biological process, which ultimately determines the outcome of bone healing. To mimic three healing conditions in the rat femur (normal, delayed, and non-healing bone defects), three different defect sizes of 0.5, 1.5, and 5.0 mm, are respectively used. The analysis of 3-day-old hematomas demonstrates clear differences in fibrin clot micro-architecture in terms of fiber diameter, fiber density, and porosity of the formed fibrin network, which result in different mechanical properties (stiffness) of the hematoma in each model. Those differences directly affect the biological processes involved. Specifically, RNA-sequencing reveals almost 700 differentially expressed genes between normally healing and non-healing defects, including significantly up-regulated essential osteogenic genes in normally healing defects, also differences in immune cell populations, activated osteogenic transcriptional regulators as well as potential novel marker genes. Most importantly, this study demonstrates that the healing outcome has already been determined during the hematoma phase of bone healing, three days post-surgery.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba 4102, QLD, Australia; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Abraham I Bankole
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester 55902, MN, USA.
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
9
|
Jiao MN, Zhang TM, Yang K, Xu ZY, Zhang GM, Tian YY, Liu H, Yan YB. Absorbance or organization into ankylosis: a microarray analysis of haemarthrosis in a sheep model of temporomandibular joint trauma. BMC Oral Health 2021; 21:668. [PMID: 34961493 PMCID: PMC8713393 DOI: 10.1186/s12903-021-02033-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Traumatic haemarthrosis was hypothesized to be the etiology of temporomandibular (TMJ) ankylosis. Here, taking haematoma absorbance as a control, we aimed to reveal the molecular mechanisms involved in haematoma organizing into ankylosis using transcriptome microarray profiles. Material/methods Disk removal was performed to building haematoma absorbance (HA) in one side of TMJ, while removal of disk and articular fibrous layers was performed to induced TMJ ankylosis through haematoma organization (HO) in the contralateral side in a sheep model. Haematoma tissues harvested at days 1, 4 and 7 postoperatively were examined by histology, and analyzed by Affymetrix OviGene-1_0-ST microarrays. The DAVID were recruited to perform the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis for the different expression genes (DEGs). The DEGs were also typed into protein–protein interaction (PPI) networks to get the interaction data. Six significant genes screened from PPI analysis, were confirmed by real-time PCR. Results We found 268, 223 and 17 DEGs at least twofold at days 1, 4 and 7, respectively. At day 1, genes promoting collagen ossification (POSTN, BGN, LUM, SPARC), cell proliferation (TGF-β), and osteogenic differentiation of mesenchymal stem cells (BMP-2) were up-regulated in the HO side. At day 4, several genes involved in angiogenesis (KDR, FIT1, TEK) shower higher expression in the HO side. While HA was characterized by a continuous immune and inflammatory reaction. Conclusions Our results provide a comprehensive understanding of the role of haematoma in the onset and progress of TMJ ankylosis. The study will contribute to explaining why few injured TMJs ankylose and most do not from the molecular level. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-02033-w.
Collapse
Affiliation(s)
- Mai-Ning Jiao
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Tong-Mei Zhang
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Kun Yang
- Department of Oral and Maxillofacial Surgery, China Three Gorges University Affiliated Renhe Hospital, 410 Yiling Ave, Hubei, 443001, People's Republic of China
| | - Zhao-Yuan Xu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Yuan-Yuan Tian
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Hao Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China. .,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China. .,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.
| |
Collapse
|
10
|
Perskin CR, Littlefield CP, Wang C, Umeh U, Egol KA. The Efficacy and Safety of Tranexamic Acid Treatment in Orthopaedic Trauma Surgery. JBJS Rev 2021; 9:01874474-202107000-00009. [PMID: 34270510 DOI: 10.2106/jbjs.rvw.20.00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
» Tranexamic acid (TXA) is a drug used to control hemorrhage by preventing the breakdown of fibrin. » TXA is a cost-effective treatment for trauma patients across a variety of economic settings. » Concerns of TXA causing thromboembolic events (TEEs) in orthopaedic trauma patients are not supported by evidence. » TXA has been shown to reduce blood loss in hip fracture surgery.
Collapse
|
11
|
Abstract
OBJECTIVES This study aims to investigate the effect of tranexamic acid (TXA) on the union of closed femoral fractures using radiological and histological methods in an experimental rat model. MATERIALS AND METHODS This experimental study was conducted between June 2017 and February 2018. Closed femoral fractures were created in 36 male Wistar albino rats (age: three months [range, 2.5-3.5 months], weighing 200 grams [range, 180-220 grams]). Half of the animals randomly divided into two groups were administered intravenous single dose of TXA (30 mg/kg), whereas the animals in the control group did not receive any medication. The animals in the two groups were randomly divided into three groups with six animals each and cervical dislocation was performed at days 15, 30, and 45, and radiological and histopathological healing scores were compared. RESULTS When the mean radiological scores of the TXA and control groups were compared, a statistically significant difference was found in favor of the TXA group at day 15 (p=0.019), but no significant difference was found in the mean scores on days 30 and 45 (p=0.138 and p=0.269, respectively). Histopathological examination also showed a statistically significant difference between the 15-day mean score values in favor of the TXA group ( p = 0. 017 ). CONCLUSION The use of systemic TXA accelerates early bone formation and fracture healing.
Collapse
|
12
|
Keiler J, Meinel FG, Ortak J, Weber MA, Wree A, Streckenbach F. Morphometric Characterization of Human Coronary Veins and Subvenous Epicardial Adipose Tissue-Implications for Cardiac Resynchronization Therapy Leads. Front Cardiovasc Med 2021; 7:611160. [PMID: 33426007 PMCID: PMC7793918 DOI: 10.3389/fcvm.2020.611160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Subvenous epicardial fat tissue (SEAT), which acts as an electrical insulation, and the venous diameter (VD) both constitute histomorphological challenges for optimal application and lead design in cardiac synchronization therapy (CRT). In this study, we characterized the morphology of human coronary veins to improve the technical design of future CRT systems and to optimize the application of CRT leads. We retrospectively analyzed data from cardiac computed tomography (CT) of 53 patients and did studies of 14 human hearts using the postmortem freeze section technique and micro CT. Morphometric parameters (tributary distances, offspring angles, luminal VD, and SEAT thickness) were assessed. The left posterior ventricular vein (VVSP) had a mean proximal VD of 4.0 ± 1.4 mm, the left marginal vein (VMS) of 3.2 ± 1.5 mm and the anterior interventricular vein (VIA) of 3.9 ± 1.3 mm. More distally (5 cm), VDs decreased to 2.4 ± 0.6 mm, 2.3 ± 0.7 mm, and 2.4 ± 0.6 mm, respectively. In their proximal portions (15 mm), veins possessed mean SEAT thicknesses of 3.2 ± 2.4 (VVSP), 3.4 ± 2.4 mm (VMS), and 4.2 ± 2.8 mm (VIA), respectively. More distally (20-70 mm), mean SEAT thicknesses decreased to alternating low levels of 1.3 ± 1.1 mm (VVSP), 1.7 ± 1.1 mm (VMS), and 4.3 ± 2.6 mm (VIA), respectively. In contrast to the VD, SEAT thicknesses alternated along the further distal vein course and did not display a continuous decrease. Besides the CRT responsiveness of different areas of the LV myocardium, SEAT is a relevant electrophysiological factor in CRT, potentially interfering with sensing and pacing. A sufficient VD is crucial for successful CRT lead placement. Measurements revealed a trend toward greater SEAT thickness for the VIA compared to VVSP and VMS, suggesting a superior signal-to-noise-ratio in VVSP and VMS.
Collapse
Affiliation(s)
- Jonas Keiler
- Department of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Jasmin Ortak
- Rhythmology and Clinical Electrophysiology, Divisions of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Felix Streckenbach
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
13
|
Bone marrow aspirate clot: A feasible orthobiologic. J Clin Orthop Trauma 2020; 11:S789-S794. [PMID: 32999557 PMCID: PMC7503156 DOI: 10.1016/j.jcot.2020.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 12/29/2022] Open
Abstract
Musculoskeletal disorders are one of the major health burdens and a leading source of disability worldwide, affecting both juvenile and elderly populations either as a consequence of ageing or extrinsic factors such as physical injuries. This condition often involves a group of locomotor structures such as the bones, joints and muscles and may therefore cause significant economic and emotional impact. Some pharmacological and non-pharmacological treatments have been considered as potential solutions, however, these alternatives have provided quite limited efficacy due to the short-term effect on pain management and inability to restore damaged tissue. The emergence of novel therapeutic alternatives such as the application of orthobiologics, particularly bone marrow aspirate (BMA) clot, have bestowed medical experts with considerable optimism as evidenced by the significant results found in numerous studies addressed in this manuscript. Although other products have been proposed for the treatment of musculoskeletal injuries, the peculiar interest in BMA, fibrin clot and associated fibrinolytic mechanisms continues to expand. BMA is a rich source of various cellular and molecular components which have demonstrated positive effects on tissue regeneration in many in vitro and in vivo models of musculoskeletal injuries. In addition to being able to undergo self-renewal and differentiation, the hematopoietic and mesenchymal stem cells present in this orthobiologic elicit key immunomodulatory and paracrine roles in inflammatory responses in tissue injury and drive the coagulation cascade towards tissue repair via different mechanisms. Although promising, these complex regenerative mechanisms have not yet been fully elucidated.
Collapse
|
14
|
Çevik HB, Eceviz E, Çilingir Kaya ÖT, Ercan F, Çeçen GS. The effect of topical and systemic tranexamic acid on fracture healing in rats. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2020; 54:207-212. [PMID: 32254038 DOI: 10.5152/j.aott.2020.02.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of the present study was to determine the effect of topical and systemic tranexamic acid (TXA) on fracture healing in a rat surgical model. METHODS We created standard, right-sided, open, diaphyseal femoral fractures with intramedullary Kirschner wire fixation in 48 male rats and divided them into three groups: a topical TXA (10 mg/kg) group, a systemic TXA (10 mg/kg) group, and a control group. Fracture healing was evaluated radiographically and histologically after early (week 2) and late (week 4) postoperative sacrifice. RESULTS The radiological scores differed significantly among the all groups (p=0.001), as did the week 2 and 4 scores (p=0.003 and p=0.010, respectively). Radiologically, the topical TXA group exhibited better bone healing at both 2 (p=0.001) and 4 (p=0.007) weeks than the control group, and the systemic group showed better healing at both 2 (p=0.027) and 4 (p=0.023) weeks than the control TXA group. Moreover, bone healing was better in the group treated with topical rather than systemic TXA on radiological examinations performed at 2 (p=0.001) and 4 (p=0.007) weeks postoperatively (p=0.001 and p=0.007, respectively). Histologically, the groups differed significantly (p=0.001). The histological scores differed significantly among the all groups (p=0.001). At 2 weeks, the topical TXA group exhibited significantly better bone healing than the control group (p=0.001). CONCLUSION Our results suggested that topical application of TXA in fracture patients may accelerate healing, whereas systemic administration may adversely affect healing.
Collapse
Affiliation(s)
- Hüseyin Bilgehan Çevik
- Department of Orthopaedics and Traumatology, University of Health Sciences, Kartal Dr. Lütfi Kırdar Research and Training Hospital, İstanbul, Turkey
| | - Engin Eceviz
- Department of Orthopaedics and Traumatology, University of Health Sciences, Kartal Dr. Lütfi Kırdar Research and Training Hospital, İstanbul, Turkey
| | | | - Feriha Ercan
- Department of Histology and Embryology, Marmara University, School of Medicine, İstanbul, Turkey
| | - Gültekin Sıtkı Çeçen
- Department of Orthopaedics and Traumatology, University of Health Sciences, Kartal Dr. Lütfi Kırdar Research and Training Hospital, İstanbul, Turkey
| |
Collapse
|
15
|
Zhao C, Yu T, Dou Q, Guo Y, Yang X, Chen Y. Knockout of TLR4 promotes fracture healing by activating Wnt/β-catenin signaling pathway. Pathol Res Pract 2019; 216:152766. [PMID: 31796334 DOI: 10.1016/j.prp.2019.152766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effect of Toll like receptor 4 (TLR4) on fracture healing. METHODS The open tibial fracture models in TLR4 knockout (TLR4-/-) and wild type (WT) C57BL-6 J mice were established. The radiological examination, tartrate-resistant acid phosphatase (TRAP) staining, Micro-CT scan and biological torsion test were performed on 7, 14 and 21 days after operation. Enzyme Linked Immunosorbent Assay (ELISA) kit was used to detect the expression levels of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and interleukin 6 (IL-6). Western blotting was used to detect the expression of β-catenin, Wingless-type MMTV integration site family, member 4 and 5B (Wnt4 and Wnt5B), proliferating cell nuclear antigen (PCNA) and bone morphogenetic protein-2 (BMP-2) of the callus tissue obtained from mice. RESULTS TLR4 knockout promoted fracture healing, reduced the number of osteoclasts, increased bone callus volume (BV) and callus mineralized volume fraction (BV/TV%) (P < 0.05), increased the maximum torque and torsional stiffness of callus (P < 0.05), reduced TNF-α, IL-1β and IL-6 expression (P < 0.01), and increased the expression levels of β-catenin, Wnt4, Wnt5B, PCNA and BMP-2 (P < 0.01). CONCLUSION TLR4 knockout reduced inflammatory and promoted fracture healing by activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cunju Zhao
- Department of Spinal Surgery, Qilu Hospital of ShanDong University, No. 107, Cultural West Road, Jinan City, Shandong Province, 250012, China; Department Of Orthopedics, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng City, Shandong Province, 252000, China
| | - Tao Yu
- Department of Spinal Surgery, Qilu Hospital of ShanDong University, No. 107, Cultural West Road, Jinan City, Shandong Province, 250012, China; Department Of Orthopedics, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng City, Shandong Province, 252000, China
| | - Qingjun Dou
- Department Of Orthopedics, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng City, Shandong Province, 252000, China
| | - Yue Guo
- Department Of Orthopedics, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng City, Shandong Province, 252000, China
| | - Xiaofei Yang
- Department Of Orthopedics, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng City, Shandong Province, 252000, China
| | - Yunzhen Chen
- Department of Spinal Surgery, Qilu Hospital of ShanDong University, No. 107, Cultural West Road, Jinan City, Shandong Province, 250012, China.
| |
Collapse
|
16
|
Tomecka MJ, Ethiraj LP, Sánchez LM, Roehl HH, Carney TJ. Clinical pathologies of bone fracture modelled in zebrafish. Dis Model Mech 2019; 12:dmm.037630. [PMID: 31383797 PMCID: PMC6765199 DOI: 10.1242/dmm.037630] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/24/2019] [Indexed: 01/24/2023] Open
Abstract
Reduced bone quality or mineral density predict susceptibility to fracture and also attenuate subsequent repair. Bone regrowth is also compromised by bacterial infection, which exacerbates fracture site inflammation. Because of the cellular complexity of fracture repair, as well as genetic and environmental influences, there is a need for models that permit visualisation of the fracture repair process under clinically relevant conditions. To characterise the process of fracture repair in zebrafish, we employed a crush fracture of fin rays, coupled with histological and transgenic labelling of cellular responses; the results demonstrate a strong similarity to the phased response in humans. We applied our analysis to a zebrafish model of osteogenesis imperfecta (OI), which shows reduced bone quality, spontaneous fractures and propensity for non-unions. We found deficiencies in the formation of a bone callus during fracture repair in our OI model and showed that clinically employed antiresorptive bisphosphonates can reduce spontaneous fractures in OI fish and also measurably reduce fracture callus remodelling in wild-type fish. The csf1ra mutant, which has reduced osteoclast numbers, also showed reduced callus remodelling. Exposure to excessive bisphosphonate, however, disrupted callus repair. Intriguingly, neutrophils initially colonised the fracture site, but were later completely excluded. However, when fractures were infected with Staphylococcus aureus, neutrophils were retained and compromised repair. This work elevates the zebrafish bone fracture model and indicates its utility in assessing conditions of relevance to an orthopaedic setting with medium throughput. This article has an associated First Person interview with the first author of the paper. Summary: The effect of osteogenesis imperfecta, bisphosphonate treatment and bacterial infection on phases of bone fracture repair are determined using a zebrafish fracture model.
Collapse
Affiliation(s)
- Monika J Tomecka
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, 138673, Singapore.,Department of Biomedical Science, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Lalith P Ethiraj
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University 636921, Singapore
| | - Luis M Sánchez
- Department of Biomedical Science, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Henry H Roehl
- Department of Biomedical Science, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Tom J Carney
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, 138673, Singapore .,Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University 636921, Singapore
| |
Collapse
|
17
|
Li L, He Y, Chen X, Dong Y. The Role of Continuous Cerebrospinal Fluid Pulsation Stress in the Remodeling of Artificial Vertebral Laminae: A Comparison Experiment. Tissue Eng Part A 2019; 25:203-213. [DOI: 10.1089/ten.tea.2018.0100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Linli Li
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Yiqun He
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Xujun Chen
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Youhai Dong
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Modeling the Macrophage-Mediated Inflammation Involved in the Bone Fracture Healing Process. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS 2019. [DOI: 10.3390/mca24010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new mathematical model is presented to study the effects of macrophages on the bone fracture healing process. The model consists of a system of nonlinear ordinary differential equations that represents the interactions among classically and alternatively activated macrophages, mesenchymal stem cells, osteoblasts, and pro- and anti-inflammatory cytokines. A qualitative analysis of the model is performed to determine the equilibria and their corresponding stability properties. Numerical simulations are also presented to support the theoretical results, and to monitor the evolution of a broken bone for different types of fractures under various medical interventions. The model can be used to guide clinical experiments and to explore possible medical treatments that accelerate the bone fracture healing process, either by surgical interventions or drug administrations.
Collapse
|
19
|
Han C, Li X, Zhou T, Chen C, Zhang K, Yang S, Wang X, Tian H, Zhao C, Zhao J. A tranilast and BMP-2 based functional bilayer membrane is effective for the prevention of epidural fibrosis during spinal lamina reconstruction. J Mater Chem B 2019. [DOI: 10.1039/c8tb03071e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Failed Back Surgery Syndrome (FBSS) is a common complication of lumbar surgery.
Collapse
|
20
|
Ma Y, Zhou Y, Wu F, Ji W, Zhang J, Wang X. The Bidirectional Interactions Between Inflammation and Coagulation in Fracture Hematoma. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:46-54. [PMID: 30129875 DOI: 10.1089/ten.teb.2018.0157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPACT STATEMENT The review leads to better understanding of the interrelation between inflammation mediators and coagulation factors in the early fracture hematoma, and their influences on hematoma formation in the beginning of fracture healing. Furthermore, development of therapies aimed at simultaneous modulation of both coagulation factors and inflammation factors that affect hematoma structure, rather than specific factors, may be most promising.
Collapse
Affiliation(s)
- Yaping Ma
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,2 Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi, China
| | - Yinghong Zhou
- 3 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Fujun Wu
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenjun Ji
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Wang
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,2 Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi, China.,3 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
21
|
Arias CF, Herrero MA, Echeverri LF, Oleaga GE, López JM. Bone remodeling: A tissue-level process emerging from cell-level molecular algorithms. PLoS One 2018; 13:e0204171. [PMID: 30231062 PMCID: PMC6145577 DOI: 10.1371/journal.pone.0204171] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/03/2018] [Indexed: 01/08/2023] Open
Abstract
The human skeleton undergoes constant remodeling throughout the lifetime. Processes occurring on microscopic and molecular scales degrade bone and replace it with new, fully functional tissue. Multiple bone remodeling events occur simultaneously, continuously and independently throughout the body, so that the entire skeleton is completely renewed about every ten years.Bone remodeling is performed by groups of cells called Bone Multicellular Units (BMU). BMUs consist of different cell types, some specialized in the resorption of old bone, others encharged with producing new bone to replace the former. These processes are tightly regulated so that the amount of new bone produced is in perfect equilibrium with that of old bone removed, thus maintaining bone microscopic structure.To date, many regulatory molecules involved in bone remodeling have been identified, but the precise mechanism of BMU operation remains to be fully elucidated. Given the complexity of the signaling pathways already known, one may question whether such complexity is an inherent requirement of the process or whether some subset of the multiple constituents could fulfill the essential role, leaving functional redundancy to serve an alternative safety role. We propose in this work a minimal model of BMU function that involves a limited number of signals able to account for fully functional BMU operation. Our main assumptions were i) at any given time, any cell within a BMU can select only one among a limited choice of decisions, i.e. divide, die, migrate or differentiate, ii) this decision is irreversibly determined by depletion of an appropriate internal inhibitor and iii) the dynamics of any such inhibitor are coupled to that of specific external mediators, such as hormones, cytokines, growth factors. It was thus shown that efficient BMU operation manifests as an emergent process, which results from the individual and collective decisions taken by cells within the BMU unit in the absence of any external planning.
Collapse
Affiliation(s)
- Clemente F. Arias
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Complutense, 28040 Madrid, Spain
| | - Miguel A. Herrero
- Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain
| | - Luis F. Echeverri
- Instituto de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, 53108 Medellín, Colombia
| | - Gerardo E. Oleaga
- Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Matemática Interdisciplinar, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain
| | - José M. López
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
22
|
Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models. Comput Biol Med 2018; 99:201-208. [DOI: 10.1016/j.compbiomed.2018.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/02/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
|
23
|
Li L, Chen X, He Y, Dong Y. Biological and Mechanical Factors Promote the Osteogenesis of Rabbit Artificial Vertebral Laminae: A Comparison Study. Tissue Eng Part A 2018; 24:1082-1090. [DOI: 10.1089/ten.tea.2017.0426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Linli Li
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Minhang, China
| | - Xujun Chen
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Minhang, China
| | - Yiqun He
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Minhang, China
| | - Youhai Dong
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Minhang, China
| |
Collapse
|
24
|
Schwarz C, Ott CE, Wulsten D, Brauer E, Schreivogel S, Petersen A, Hassanein K, Roewer L, Schmidt T, Willie BM, Duda GN. The Interaction of BMP2-Induced Defect Healing in Rat and Fixator Stiffness Modulates Matrix Alignment and Contraction. JBMR Plus 2018; 2:174-186. [PMID: 30283901 PMCID: PMC6124159 DOI: 10.1002/jbm4.10031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/14/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022] Open
Abstract
Successful fracture healing requires a tight interplay between mechanical and biological cues. In vitro studies illustrated that mechanical loading modulates bone morphogenetic protein (BMP) signaling. However, in the early phases of large bone defect regeneration in vivo, the underlying mechanisms leading to this mechanosensation remained unknown. We investigated the interaction of BMP2 stimulation and mechanical boundary conditions in a rat critical‐sized femoral defect model (5 mm) stabilized with three distinctly different external fixator stiffness. Defects were treated with 5 μg rhBMP2 loaded on an absorbable collagen sponge. Early matrix alignment was monitored by second‐harmonic generation imaging. Bony bridging of defects and successive healing was monitored by histology at day 7 and day 14 as well as in vivo microCT at days 10, 21, and 42 post‐operation. Femora harvested at day 42 were characterized mechanically assessing torsional load to failure ex vivo. At tissue level, differences between groups were visible at day 14 with manifest bone formation in the microCT. Histologically, we observed prolonged chondrogenesis upon flexible fixation, whereas osteogenesis started earlier after rigid and semirigid fixation. At later time points, there was a boost of bone tissue formation upon flexible fixation, whereas other groups already displayed signs of tissue maturation. Based on gene expression profiling, we analyzed the mechanobiological interplay. Already at day 3, these analyses revealed differences in expression pattern, specifically of genes involved in extracellular matrix formation. Gene regulation correlating with fixator stiffness was pronounced at day 7 comprising genes related to immunological processes and cellular contraction. The influence of loading on matrix contraction was further investigated and confirmed in a 3D bioreactor. Taken together, we demonstrate an early onset of mechanical conditions influencing BMP2‐induced defect healing and shed light on gene regulatory networks associated with extracellular matrix organization and contraction that seemed to directly impact healing outcomes. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolin Schwarz
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany.,Research Group Development and Disease Max Planck Institute for Molecular Genetics Berlin Germany
| | - Dag Wulsten
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Erik Brauer
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Sophie Schreivogel
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Ansgar Petersen
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Kerstin Hassanein
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Linda Roewer
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Tanja Schmidt
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Bettina M Willie
- Research Center Shriners Hospitals for Children-Canada Department of Pediatric Surgery McGill University Montreal Canada
| | - Georg N Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| |
Collapse
|
25
|
Wang X, Zhang Y, Ji W, Ao J. Categorising bone defect hematomas – Enhance early bone healing. Med Hypotheses 2018. [DOI: 10.1016/j.mehy.2018.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep 2017; 6:87-100. [PMID: 28377988 PMCID: PMC5365304 DOI: 10.1016/j.bonr.2017.03.002] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/15/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
Bone fracture is a very common body injury. The healing process is physiologically complex, involving both biological and mechanical aspects. Following a fracture, cell migration, cell/tissue differentiation, tissue synthesis, and cytokine and growth factor release occur, regulated by the mechanical environment. Over the past decade, bone healing simulation and modeling has been employed to understand its details and mechanisms, to investigate specific clinical questions, and to design healing strategies. The goal of this effort is to review the history and the most recent work in bone healing simulations with an emphasis on both biological and mechanical properties. Therefore, we provide a brief review of the biology of bone fracture repair, followed by an outline of the key growth factors and mechanical factors influencing it. We then compare different methodologies of bone healing simulation, including conceptual modeling (qualitative modeling of bone healing to understand the general mechanisms), biological modeling (considering only the biological factors and processes), and mechanobiological modeling (considering both biological aspects and mechanical environment). Finally we evaluate different components and clinical applications of bone healing simulation such as mechanical stimuli, phases of bone healing, and angiogenesis.
Collapse
Affiliation(s)
- Mohammad S. Ghiasi
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Jason Chen
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ashkan Vaziri
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Edward K. Rodriguez
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep 2016; 6:38814. [PMID: 27934940 PMCID: PMC5146967 DOI: 10.1038/srep38814] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.
Collapse
|
28
|
Wang X, Friis TE, Masci PP, Crawford RW, Liao W, Xiao Y. Alteration of blood clot structures by interleukin-1 beta in association with bone defects healing. Sci Rep 2016; 6:35645. [PMID: 27767056 PMCID: PMC5073366 DOI: 10.1038/srep35645] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
The quality of hematomas are crucial for successful early bone defect healing, as the structure of fibrin clots can significantly influence the infiltration of cells, necessary for bone regeneration, from adjacent tissues into the fibrin network. This study investigated if there were structural differences between hematomas from normal and delayed healing bone defects and whether such differences were linked to changes in the expression of IL-1β. Using a bone defect model in rats, we found that the hematomas in the delayed healing model had thinner fibers and denser clot structures. Moreover, IL-1β protein levels were significantly higher in the delayed healing hematomas. The effects of IL-1β on the structural properties of human whole blood clots were evaluated by thrombelastograph (TEG), scanning electronic microscopy (SEM), compressive study, and thrombolytic assays. S-nitrosoglutathione (GSNO) was applied to modulate de novo hematoma structure and the impact on bone healing was evaluated in the delayed healing model. We found that GSNO produced more porous hematomas with thicker fibers and resulted in significantly enhanced bone healing. This study demonstrated that IL-1β and GSNO had opposing effects on clot architecture, the structure of which plays a pivotal role in early bone healing.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Translational Research Institute, School of Medicine, The University of Queensland, Brisbane, 4102 Queensland, Australia
| | - Thor E. Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
| | - Paul P. Masci
- Translational Research Institute, School of Medicine, The University of Queensland, Brisbane, 4102 Queensland, Australia
| | - Ross W. Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
| | - Wenbo Liao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
| |
Collapse
|
29
|
Wang X, Friis T, Glatt V, Crawford R, Xiao Y. Structural properties of fracture haematoma: current status and future clinical implications. J Tissue Eng Regen Med 2016; 11:2864-2875. [PMID: 27401283 DOI: 10.1002/term.2190] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/24/2022]
Abstract
Blood clots (haematomas) that form immediately following a bone fracture have been shown to be vital for the subsequent healing process. During the clotting process, a number of factors can influence the fibrin clot structure, such as fibrin polymerization, growth factor binding, cellular infiltration (including platelet retraction), protein concentrations and cytokines. The modulation of the fibrin clot structure within the fracture site has important clinical implications and could result in the development of multifunctional scaffolds that mimic the natural structure of a haematoma. Artificial haematoma structures such as these can be created from the patient's own blood and can therefore act as an ideal bone defect filling material for potential clinical application to accelerate bone regeneration. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xin Wang
- Department of Spine, Affiliated Hospital of Zunyi Medical College, Zunyi, People's Republic of China.,Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Thor Friis
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Vaida Glatt
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ross Crawford
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Yin Xiao
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
30
|
Wang X, Luo Y, Masci PP, Crawford R, Xiao Y. Influence of Interleukin-1 Beta on Platelet-Poor Plasma Clot Formation: A Potential Impact on Early Bone Healing. PLoS One 2016; 11:e0149775. [PMID: 26909757 PMCID: PMC4766092 DOI: 10.1371/journal.pone.0149775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Hematoma quality (especially the fibrin matrix) plays an important role in the bone healing process. Here, we investigated the effect of interleukin-1 beta (IL-1β) on fibrin clot formation from platelet-poor plasma (PPP). METHODS Five-milliliter of rat whole-blood samples were collected from the hepatic portal vein. All blood samples were firstly standardized via a thrombelastograph (TEG), blood cell count, and the measurement of fibrinogen concentration. PPP was prepared by collecting the top two-fifths of the plasma after centrifugation under 400 × g for 10 min at 20°C. The effects of IL-1β cytokines on artificial fibrin clot formation from PPP solutions were determined by scanning electronic microscopy (SEM), confocal microscopy (CM), turbidity, and clot lysis assays. RESULTS The lag time for protofibril formation was markedly shortened in the IL-1β treatment groups (243.8 ± 76.85 in the 50 pg/mL of IL-1β and 97.5 ± 19.36 in the 500 pg/mL of IL-1β) compared to the control group without IL-1β (543.8 ± 205.8). Maximal turbidity was observed in the control group. IL-1β (500 pg/mL) treatment significantly decreased fiber diameters resulting in smaller pore sizes and increased density of the fibrin clot structure formed from PPP (P < 0.05). The clot lysis assay revealed that 500 pg/mL IL-1β induced a lower susceptibility to dissolution due to the formation of thinner and denser fibers. CONCLUSION IL-1β can significantly influence PPP fibrin clot structure, which may affect the early bone healing process.
Collapse
Affiliation(s)
- Xin Wang
- Department of Spine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou Province, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Yan Luo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul P. Masci
- Translational Research Institute, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Yang J, Zhou Y, Wei F, Xiao Y. Blood clot formed on rough titanium surface induces early cell recruitment. Clin Oral Implants Res 2015; 27:1031-8. [DOI: 10.1111/clr.12672] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Jin Yang
- Institute of Health and Biomedical Innovation; Queensland University of Technology (QUT); Brisbane Qld Australia
- School of Stomatology; Affiliated Stomatological Hospital; Fujian Medical University; Fuzhou China
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation; Queensland University of Technology (QUT); Brisbane Qld Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM); Queensland University of Technology; Brisbane Qld Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation; Queensland University of Technology (QUT); Brisbane Qld Australia
- School of Basic Medicine; Hubei University of Chinese Medicine; Wuhan China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation; Queensland University of Technology (QUT); Brisbane Qld Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM); Queensland University of Technology; Brisbane Qld Australia
| |
Collapse
|
32
|
Rukhlenko OS, Dudchenko OA, Zlobina KE, Guria GT. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress. PLoS One 2015; 10:e0134028. [PMID: 26222505 PMCID: PMC4519339 DOI: 10.1371/journal.pone.0134028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/05/2015] [Indexed: 01/06/2023] Open
Abstract
Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines.
Collapse
Affiliation(s)
- Oleksii S. Rukhlenko
- National Research Center for Hematology, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Cherkasy National University, Cherkasy, Ukraine
| | | | | | - Georgy Th. Guria
- National Research Center for Hematology, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|