Leng T, Keeling MJ. Improving pairwise approximations for network models with susceptible-infected-susceptible dynamics.
J Theor Biol 2020;
500:110328. [PMID:
32454058 DOI:
10.1016/j.jtbi.2020.110328]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/02/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
Network models of disease spread play an important role in elucidating the impact of long-lasting infectious contacts on the dynamics of epidemics. Moment-closure approximation is a common method of generating low-dimensional deterministic models of epidemics on networks, which has found particular success for diseases with susceptible-infected-recovered (SIR) dynamics. However, the effect of network structure is arguably more important for sexually transmitted infections, where epidemiologically relevant contacts are comparatively rare and longstanding, and which are in general modelled via the susceptible-infected-susceptible (SIS)-paradigm. In this paper, we introduce an improvement to the standard pairwise approximation for network models with SIS-dynamics for two different network structures: the isolated open triple (three connected individuals in a line) and the k-regular network. This improvement is achieved by tracking the rate of change of errors between triple values and their standard pairwise approximation. For the isolated open triple, this improved pairwise model is exact, while for k-regular networks a closure is made at the level of triples to obtain a closed set of equations. This improved pairwise approximation provides an insight into the errors introduced by the standard pairwise approximation, and more closely matches both higher-order moment-closure approximations and explicit stochastic simulations with only a modest increase in dimensionality to the standard pairwise approximation.
Collapse