1
|
Anbalakan K, Toh HW, Ang HY, Buist ML, Leo HL. How does the Nature of an Excipient and an Atheroma Influence Drug-Coated Balloon Therapy? Cardiovasc Eng Technol 2022; 13:915-929. [PMID: 35606568 DOI: 10.1007/s13239-022-00626-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/19/2022] [Indexed: 01/27/2023]
Abstract
The advent of drug-eluting stents and drug-coated balloons have significantly improved the clinical outcome of patients with vascular occlusions. However, ischemic vascular disease remains the most common cause of death worldwide. Improving the current treatment modalities demands a better understanding of the processes which govern drug uptake and retention in blood vessels. In this study, we evaluated the influence of urea and butyryl-trihexyl citrate, as excipients, on the efficacy of drug-coated balloon therapy. An integrated approach, utilizing both in-vitro and in-silico methods, was used to quantify the tracking loss, vessel adhesion, drug release, uptake, and distribution associated with the treatment. Moreover, a parametric study was used to evaluate the potential influence of different types of lesions on drug-coated balloon therapy. Despite the significantly higher tracking loss (urea: 35.5% vs. butyryl-trihexyl citrate: 8.13%) observed in the urea-based balloons, the drug uptake was almost two times greater than with its hydrophobic counterpart. Non-calcified lesions were found to delay the transmural propagation of sirolimus while calcification was shown to limit the retentive potential of lesions. Ultimately this study helps to elucidate how different excipients and types of lesions may influence the efficacy of drug-coated balloon therapy.
Collapse
Affiliation(s)
- Karthic Anbalakan
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.
| | - Han Wei Toh
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, 169609, Singapore
| | - Hui Ying Ang
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.,National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, 169609, Singapore.,Department of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Martin Lindsay Buist
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
2
|
Bekisz S, Baudin L, Buntinx F, Noël A, Geris L. In Vitro, In Vivo, and In Silico Models of Lymphangiogenesis in Solid Malignancies. Cancers (Basel) 2022; 14:1525. [PMID: 35326676 PMCID: PMC8946816 DOI: 10.3390/cancers14061525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Lymphangiogenesis (LA) is the formation of new lymphatic vessels by lymphatic endothelial cells (LECs) sprouting from pre-existing lymphatic vessels. It is increasingly recognized as being involved in many diseases, such as in cancer and secondary lymphedema, which most often results from cancer treatments. For some cancers, excessive LA is associated with cancer progression and metastatic dissemination to the lymph nodes (LNs) through lymphatic vessels. The study of LA through in vitro, in vivo, and, more recently, in silico models is of paramount importance in providing novel insights and identifying the key molecular actors in the biological dysregulation of this process under pathological conditions. In this review, the different biological (in vitro and in vivo) models of LA, especially in a cancer context, are explained and discussed, highlighting their principal modeled features as well as their advantages and drawbacks. Imaging techniques of the lymphatics, complementary or even essential to in vivo models, are also clarified and allow the establishment of the link with computational approaches. In silico models are introduced, theoretically described, and illustrated with examples specific to the lymphatic system and the LA. Together, these models constitute a toolbox allowing the LA research to be brought to the next level.
Collapse
Affiliation(s)
- Sophie Bekisz
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
| | - Louis Baudin
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Florence Buntinx
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Agnès Noël
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
- Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Zocchi ML, Facchin F, Pagani A, Bonino C, Sbarbati A, Conti G, Vindigni V, Bassetto F. New perspectives in regenerative medicine and surgery: the bioactive composite therapies (BACTs). EUROPEAN JOURNAL OF PLASTIC SURGERY 2021; 45:1-25. [PMID: 34728900 PMCID: PMC8554210 DOI: 10.1007/s00238-021-01874-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
Regenerative medicine and surgery is a rapidly expanding branch of translational research in tissue engineering, cellular and molecular biology. To date, the methods to improve cell intake, survival, and isolation need to comply with a complex and still unclear regulatory frame, becoming everyday more restrictive and often limiting the effectiveness and outcome of the therapeutic choices. Thus, the authors developed a novel 360° regenerative strategy based on the synergic action of several new components called the bioactive composite therapies (BACTs) to improve grafted cells intake, and survival in total compliance with the legal and ethical limits of the current regulatory frame. The rationale at the origin of this new technology is based on the evidence that cells need supportive substrate to survive in vitro and this observation, applying the concept of translational medicine, is true also in vivo. Bioactive composite mixtures (BACMs) are tailor-made bioactive mixtures containing several bioactive components that support cells' survival and induce a regenerative response in vivo by stimulating the recipient site to act as an in situ real bioreactor. Many different tissues have been used in the past for the isolation of cells, molecules, and growth factors, but the adipose tissue and its stromal vascular fraction (SVF) remains the most valuable, abundant, safe, and reliable source of regenerative components and particularly of adipose-derived stems cells (ADSCs). The role of plastic surgeons as the historical experts in all the most advanced techniques for harvesting, manipulating, and grafting adipose tissue is fundamental in this constant process of expansion of regenerative procedures. In this article, we analyze the main causes of cell death and the strategies for preventing it, and we present all the technical steps for preparing the main components of BACMs and the different mixing modalities to obtain the most efficient regenerative action on different clinical and pathological conditions. The second section of this work is dedicated to the logical and sequential evolution from simple bioactive composite grafts (BACGs) that distinguished our initial approach to regenerative medicine, to BACTs where many other fundamental technical steps are analyzed and integrated for supporting and enhancing the most efficient regenerative activity. Level of Evidence: Not gradable.
Collapse
Affiliation(s)
- Michele L Zocchi
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy.,Remix Institute for Regenerative Surgery, Turin, Italy
| | - Federico Facchin
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy
| | - Andrea Pagani
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Claudia Bonino
- Department of Rheumatology and Immune Diseases, Humanitas Gradenigo Hospital, Turin, Italy
| | - Andrea Sbarbati
- Institute of Human Anatomy, University of Verona, Verona, Italy
| | - Giamaica Conti
- Institute of Human Anatomy, University of Verona, Verona, Italy
| | - Vincenzo Vindigni
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy
| | - Franco Bassetto
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Shi G, Wang Y, Wang Z, Thoreson AR, Jacobson DS, Amadio PC, Behfar A, Moran SL, Zhao C. A novel engineered purified exosome product patch for tendon healing: An explant in an ex vivo model. J Orthop Res 2021; 39:1825-1837. [PMID: 32936480 PMCID: PMC9235100 DOI: 10.1002/jor.24859] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 02/04/2023]
Abstract
Reducing tendon failure after repair remains a challenge due to its poor intrinsic healing ability. The purpose of this study is to investigate the effect of a novel tissue-engineered purified exosome product (PEP) patch on tendon healing in a canine ex vivo model. Lacerated flexor digitorum profundus (FDP) tendons from three canines' paws underwent simulated repair with Tisseel patch alone or biopotentiated with PEP. For the ex vivo model, FDP tendons were randomly divided into three groups: FDP tendon repair alone group (Control), Tisseel patch alone group, and the Tisseel plus PEP (TEPEP) patch group. Following 4 weeks of tissue culture, the failure load, stiffness, histology, and gene expression of the healing tendon were evaluated. Transmission electron microscopy revealed that in exosomes of PEP the diameters ranged from 93.70 to 124.65 nm, and the patch release test showed this TEPEP patch could stably release the extracellular vesicle over 2 weeks. The failure strength of the tendon in the TEPEP patch group was significantly higher than that of the Control group and Tisseel alone group. The results of histology showed that the TEPEP patch group had the smallest healing gap and the largest number of fibroblasts on the surface of the injured tendon. Quantitative reverse transcription polymerase chain reaction showed that TEPEP patch increased the expression of collagen type III, matrix metallopeptidase 2 (MMP2), MMP3, MMP14, and reduced the expression of transforming growth factor β1, interleukin 6. This study shows that the TEPEP patch could promote tendon repair by reducing gap formation and inflammatory response, increasing the activity of endogenous cells, and formation of type III collagen.
Collapse
Affiliation(s)
- Guidong Shi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Tianjin Medical University, Tianjin, China
| | - Yicun Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Zhanwen Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Peter C. Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Steven L. Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Schwartz AV, Sant KE, Navarrete J, George UZ. Mathematical modeling of the interaction between yolk utilization and fish growth in zebrafish, Danio rerio. Development 2021; 148:261800. [PMID: 33960383 DOI: 10.1242/dev.193508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Optimal embryonic development plays a major role in the health of an individual beyond the developmental stage. Nutritional perturbation during development is associated with cardiovascular and metabolic disease later in life. With both nutritional uptake and overall growth being risk factors for eventual health, it is necessary to understand not only the behavior of the processes during development but also their interactions. In this study, we used differential equations, image analyses, curve fittings, parameter estimation and laboratory experiments to quantify the rate of yolk absorption and its effect on early development of a vertebrate model (Danio rerio). Findings from this study establish a nonlinear functional relationship between nutrient absorption and early fish growth. We found that the rate of change in fish length and yolk utilization is logistic, that is the yolk decays rapidly for a period of time before leveling out. An interesting finding from this study is that yolk utilization reaches its maximum at 84 h post-fertilization. We validated our mathematical models against experimental observations, making them powerful tools for replication and future simulations.
Collapse
Affiliation(s)
- Ashley V Schwartz
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Julian Navarrete
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Uduak Z George
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
6
|
Zocchi ML. Regenerative assisted microsurgery (RAM) and regenerative assisted supermicrosurgery (RASM): the future of microsurgery? EUROPEAN JOURNAL OF PLASTIC SURGERY 2021; 44:389-391. [PMID: 33867686 PMCID: PMC8043839 DOI: 10.1007/s00238-021-01812-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Michele L Zocchi
- Plastic and Reconstructive Surgery Unit, University of Padua, Via Giustiniani 2, 35128 Padua, Italy.,Remix Regeneration Institute, Turin, Italy
| |
Collapse
|
7
|
Lee HS, Jung JI, Kim KH, Park SJ, Kim EJ. Toxicodendron vernicifluum Stokes extract inhibits solid tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice. PLoS One 2020; 15:e0241805. [PMID: 33152052 PMCID: PMC7646375 DOI: 10.1371/journal.pone.0241805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
Toxicodendron vernicifluum Stokes has long been used as a food supplement and traditional herbal medicine in East Asia. We applied a new extraction method to produce Toxicodendron vernicifluum Stokes extract (TVSE), that doesn't contain urushiol (an allergenic toxin) but dose have higher levels of some flavonoids such as fustin and fisetin. This study was conducted to investigate the anticancer effects of TVSE in an in vivo system. Fifty BALB/c mice were acclimated for one week and then injected with 4T1 murine mammary carcinoma cells in mammary fat pads. After 7 days, the mice were randomly divided into 5 groups, and orally administered with 0, 50, 100, 200 or 400 mg of TVSE/kg body weight (BW)/day for 20 days. TVSE reduced tumor volume and weight dose-dependently. The expression of Ki67 was significantly reduced and the number of TUNEL-positive apoptotic cells was significantly increased in the TVSE-treated group over 100 mg/kg BW/day. While tumor nodules were not found in the liver, but only in lungs, the number of tumor nodules was reduced in a dose-dependent manner in the TVSE treated groups compared to the control group. In breast tumors, expression of platelet endothelial cell adhesion molecule (PECAM-1) and vascular endothelial growth factor (VEGF) was reduced by TVSE treatment. TVSE treatment significantly suppressed mRNA expression in tumors of matrix metalloproteinase (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-1, urokinase-type plasminogen activator (uPA), intercellular adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1 while increasing plasminogen activator inhibitor (PAI)-1. These results suggest that TVSE is potentially beneficial for the suppression of breast cancer growth and its-associated lung metastasis.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan,
Korea
| | - Jae In Jung
- Regional Strategic Industry Innovation Center, Hallym University,
Chuncheon, Korea
| | | | | | - Eun Ji Kim
- Regional Strategic Industry Innovation Center, Hallym University,
Chuncheon, Korea
| |
Collapse
|
8
|
Wertheim KY, Roose T. Can VEGFC Form Turing Patterns in the Zebrafish Embryo? Bull Math Biol 2019; 81:1201-1237. [PMID: 30607882 PMCID: PMC6397306 DOI: 10.1007/s11538-018-00560-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022]
Abstract
This paper is concerned with a late stage of lymphangiogenesis in the trunk of the zebrafish embryo. At 48 hours post-fertilisation (HPF), a pool of parachordal lymphangioblasts (PLs) lies in the horizontal myoseptum. Between 48 and 168 HPF, the PLs spread from the horizontal myoseptum to form the thoracic duct, dorsal longitudinal lymphatic vessel, and parachordal lymphatic vessel. This paper deals with the potential of vascular endothelial growth factor C (VEGFC) to guide the differentiation of PLs into the mature lymphatic endothelial cells that form the vessels. We built a mathematical model to describe the biochemical interactions between VEGFC, collagen I, and matrix metalloproteinase 2 (MMP2). We also carried out a linear stability analysis of the model and computer simulations of VEGFC patterning. The results suggest that VEGFC can form Turing patterns due to its relations with MMP2 and collagen I, but the zebrafish embryo needs a separate control mechanism to create the right physiological conditions. Furthermore, this control mechanism must ensure that the VEGFC patterns are useful for lymphangiogenesis: stationary, steep gradients, and reasonably fast forming. Generally, the combination of a patterning species, a matrix protein, and a remodelling species is a new patterning mechanism.
Collapse
Affiliation(s)
- Kenneth Y. Wertheim
- Faculty of Engineering and the Environment, University of Southampton, Highfield Campus, Southampton, SO17 1BJ UK
- Present Address: University of Nebraska-Lincoln, 1901 Vine St N231, Lincoln, NE 68503 USA
| | - Tiina Roose
- Faculty of Engineering and the Environment, University of Southampton, Highfield Campus, Southampton, SO17 1BJ UK
| |
Collapse
|