1
|
Suchá D, Bohte AE, van Ooij P, Leiner T, Schrauben EM, Grotenhuis HB. Fetal Cardiovascular Magnetic Resonance: History, Current Status, and Future Directions. J Magn Reson Imaging 2025; 61:2357-2375. [PMID: 39578988 PMCID: PMC12063768 DOI: 10.1002/jmri.29664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Fetal cardiovascular magnetic resonance imaging (MRI) has emerged as a complementary modality for prenatal imaging in suspected congenital heart disease. Ongoing technical improvements extend the potential clinical value of fetal cardiovascular MRI. Ascertaining equivocal prenatal diagnostics obtained with ultrasonography allows for appropriate parental counseling and planning of postnatal surgery. This work summarizes current acquisition techniques and clinical applications of fetal cardiovascular MRI in the prenatal diagnosis and follow-up of fetuses with congenital heart disease. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Dominika Suchá
- Department of Radiology and Nuclear MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Anneloes E. Bohte
- Department of Radiology and Nuclear MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Pim van Ooij
- Department of Pediatric CardiologyWilhelmina Children's HospitalUtrechtThe Netherlands
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Tim Leiner
- Department of Radiology and Nuclear MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Eric M. Schrauben
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Heynric B. Grotenhuis
- Department of Pediatric CardiologyWilhelmina Children's HospitalUtrechtThe Netherlands
| |
Collapse
|
2
|
Bravo-Valenzuela NJ, Giffoni MC, Nieblas CDO, Werner H, Tonni G, Granese R, Gonçalves LF, Araujo Júnior E. Three-Dimensional Ultrasound for Physical and Virtual Fetal Heart Models: Current Status and Future Perspectives. J Clin Med 2024; 13:7605. [PMID: 39768529 PMCID: PMC11679263 DOI: 10.3390/jcm13247605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Congenital heart defects (CHDs) are the most common congenital defect, occurring in approximately 1 in 100 live births and being a leading cause of perinatal morbidity and mortality. Of note, approximately 25% of these defects are classified as critical, requiring immediate postnatal care by pediatric cardiology and neonatal cardiac surgery teams. Consequently, early and accurate diagnosis of CHD is key to proper prenatal and postnatal monitoring in a tertiary care setting. In this scenario, fetal echocardiography is considered the gold standard imaging ultrasound method for the diagnosis of CHD. However, the availability of this examination in clinical practice remains limited due to the need for a qualified specialist in pediatric cardiology. Moreover, in light of the relatively low prevalence of CHD among at-risk populations (approximately 10%), ultrasound cardiac screening for potential cardiac anomalies during routine second-trimester obstetric ultrasound scans represents a pivotal aspect of diagnosing CHD. In order to maximize the accuracy of CHD diagnoses, the views of the ventricular outflow tract and the superior mediastinum were added to the four-chamber view of the fetal heart for routine ultrasound screening according to international guidelines. In this context, four-dimensional spatio-temporal image correlation software (STIC) was developed in the early 2000s. Some of the advantages of STIC in fetal cardiac evaluation include the enrichment of anatomical details of fetal cardiac images in the absence of the pregnant woman and the ability to send volumes for analysis by an expert in fetal cardiology by an internet link. Sequentially, new technologies have been developed, such as fetal intelligent navigation echocardiography (FINE), also known as "5D heart", in which the nine fetal cardiac views recommended during a fetal echocardiogram are automatically generated from the acquisition of a cardiac volume. Furthermore, artificial intelligence (AI) has recently emerged as a promising technological innovation, offering the potential to warn of possible cardiac anomalies and thus increase the ability of non-cardiology specialists to diagnose CHD. In the early 2010s, the advent of 3D reconstruction software combined with high-definition printers enabled the virtual and 3D physical reconstruction of the fetal heart. The 3D physical models may improve parental counseling of fetal CHD, maternal-fetal interaction in cases of blind pregnant women, and interactive discussions among multidisciplinary health teams. In addition, the 3D physical and virtual models can be an useful tool for teaching cardiovascular anatomy and to optimize surgical planning, enabling simulation rooms for surgical procedures. Therefore, in this review, the authors discuss advanced image technologies that may optimize prenatal diagnoses of CHDs.
Collapse
Affiliation(s)
- Nathalie Jeanne Bravo-Valenzuela
- Department of Pediatrics, Pediatric Cardiology, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil;
| | - Marcela Castro Giffoni
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22453-900, RJ, Brazil; (M.C.G.); (H.W.)
| | - Caroline de Oliveira Nieblas
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (C.d.O.N.); (E.A.J.)
| | - Heron Werner
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22453-900, RJ, Brazil; (M.C.G.); (H.W.)
| | - Gabriele Tonni
- Department of Obstetrics and Neonatology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), AUSL Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Roberta Granese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, “G. Martino” University Hospital, 98100 Messina, Italy
| | - Luis Flávio Gonçalves
- Departments of Radiology and Child Health, University of Arizona College of Medicine, Phoenix, AZ 85016, USA;
| | - Edward Araujo Júnior
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (C.d.O.N.); (E.A.J.)
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| |
Collapse
|
3
|
Xie L, Xu H, He X, Fu H, Zhang L, Bai W, Li X, Bao L, Xu H, Li X, Guo Y. The potential of 1.5 T magnetic resonance imaging for the evaluation of fetal anomalies of the great vessels. Front Pediatr 2023; 11:1136892. [PMID: 37056942 PMCID: PMC10086421 DOI: 10.3389/fped.2023.1136892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/15/2023] Open
Abstract
PURPOSE To determine the efficacy of 1.5 T magnetic resonance imaging (MRI) for the diagnosis of anomalies of the fetal great arteries with comparison to fetal ultrasound, and to compare image quality between 1.5 T and 3.0 T MRI in fetal imaging of the great arteries. METHODS We compared the results of postnatal exam or surgery and evaluated the application value of prenatal 1.5 T MRI in the assessment of fetal great-vessel anomalies. To further determine the diagnostic potential of 1.5 T MRI, 23 pregnant women with suspected fetal cardiovascular abnormalities who had undergone ultrasound and 3.0 T MRI were enrolled and compared, respectively. RESULTS Prenatal MRI was superior to ultrasound in demonstrating aortic arch and branch abnormalities (sensitivity, 92.86% vs. 83.33%; specificity, 66.67% vs. 20%). The mean quality ratings for fetal MRI at 1.5 T was higher than 3.0 T (P < 0.001). Other than the fast scan speed afforded by 3.0 T MRI, the signal noise ratio (SNR) of 1.5 T MRI were higher than those of 3.0 T MRI; however, the difference in contrast to noise ratio (CNR) between the two imaging modalities was not statistically significant. CONCLUSIONS 1.5 T MRI can achieve an overall assessment of fetal great-vessel anomalies, especially aortic arch and branch abnormalities. Therefore, 1.5 T MRI can be considered a supplementary imaging modality for the prenatal assessment of extracardiac great vessels malformations.
Collapse
Affiliation(s)
- Linjun Xie
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Xu
- Department of Ultrasound, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuelian He
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Bai
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuesheng Li
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Bao
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Li
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Moerdijk AS, Claessens NH, van Ooijen IM, van Ooij P, Alderliesten T, Grotenhuis HB, Benders MJNL, Bohte AE, Breur JMPJ, Charisopoulou D, Clur SA, Cornette JMJ, Fejzic Z, Franssen MTM, Frerich S, Geerdink LM, Go ATJI, Gommers S, Helbing WA, Hirsch A, Holtackers RJ, Klein WM, Krings GJ, Lamb HJ, Nijman M, Pajkrt E, Planken RN, Schrauben EM, Steenhuis TJ, ter Heide H, Vanagt WYR, van Beynum IM, van Gaalen MD, van Iperen GG, van Schuppen J, Willems TP, Witters I. Fetal MRI of the heart and brain in congenital heart disease. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:59-68. [PMID: 36343660 DOI: 10.1016/s2352-4642(22)00249-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Antenatal assessment of congenital heart disease and associated anomalies by ultrasound has improved perinatal care. Fetal cardiovascular MRI and fetal brain MRI are rapidly evolving for fetal diagnostic testing of congenital heart disease. We give an overview on the use of fetal cardiovascular MRI and fetal brain MRI in congenital heart disease, focusing on the current applications and diagnostic yield of structural and functional imaging during pregnancy. Fetal cardiovascular MRI in congenital heart disease is a promising supplementary imaging method to echocardiography for the diagnosis of antenatal congenital heart disease in weeks 30-40 of pregnancy. Concomitant fetal brain MRI is superior to brain ultrasound to show the complex relationship between fetal haemodynamics in congenital heart disease and brain development.
Collapse
Affiliation(s)
- Anouk S Moerdijk
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nathalie Hp Claessens
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Inge M van Ooijen
- Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pim van Ooij
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Alderliesten
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
The role of ultrasound and MRI in diagnosing of obstetrics cardiac disorders: A systematic review. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. ROFO-FORTSCHR RONTG 2022; 194:841-851. [PMID: 35905903 DOI: 10.1055/a-1761-3500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Fetal magnetic resonance imaging (MRI) has become a valuable adjunct to ultrasound in the prenatal diagnosis of congenital pathologies of the central nervous system, thorax, and abdomen. Fetal cardiovascular magnetic resonance (CMR) was limited, mainly by the lack of cardiac gating, and has only recently evolved due to technical developments. METHOD A literature search was performed on PubMed, focusing on technical advancements to perform fetal CMR. In total, 20 publications on cardiac gating techniques in the human fetus were analyzed. RESULTS Fetal MRI is a safe imaging method with no developmental impairments found to be associated with in utero exposure to MRI. Fetal CMR is challenging due to general drawbacks (e. g., fetal motion) and specific limitations such as the difficulty to generate a cardiac gating signal to achieve high spatiotemporal resolution. Promising technical advancements include new methods for fetal cardiac gating, based on novel post-processing approaches and an external hardware device, as well as motion compensation and acceleration techniques. CONCLUSION Newly developed direct and indirect gating approaches were successfully applied to achieve high-quality morphologic and functional imaging as well as quantitative assessment of fetal hemodynamics in research settings. In cases when prenatal echocardiography is limited, e. g., by an unfavorable fetal position in utero, or when its results are inconclusive, fetal CMR could potentially serve as a valuable adjunct in the prenatal assessment of congenital cardiovascular malformations. However, sufficient data on the diagnostic performance and clinical benefit of new fetal CMR techniques is still lacking. KEY POINTS · New fetal cardiac gating methods allow high-quality fetal CMR.. · Motion compensation and acceleration techniques allow for improvement of image quality.. · Fetal CMR could potentially serve as an adjunct to fetal echocardiography in the future.. CITATION FORMAT · Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. Fortschr Röntgenstr 2022; 194: 841 - 851.
Collapse
Affiliation(s)
- Janine Knapp
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Björn P Schönnagel
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Fetal cardiovascular magnetic resonance imaging. Pediatr Radiol 2020; 50:1881-1894. [PMID: 33252756 DOI: 10.1007/s00247-020-04902-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Fetal cardiovascular MRI is showing promise as a clinical diagnostic tool in the setting of congenital heart disease when the cardiac anatomy is unresolved by US or when complementary quantitative data on blood flow, oxygen saturation and hematocrit are required to aid in management. Compared with postnatal cardiovascular MRI, prenatal cardiovascular MRI still has some technical limitations. However, ongoing technical advances continue to improve the robustness and usability of fetal cardiovascular MRI. In this review, we provide an overview of the state of the art of fetal cardiovascular MRI and summarize the current focus of clinical application for this versatile technique.
Collapse
|
8
|
Abstract
OBJECTIVE We attempted to evaluate fetal cardiac activity of congenital heart disease (CHD) and normal heart fetuses by magnetic resonance imaging (MRI). METHODS We evaluated the fetal cardiac functional assessment and the blood flow of descending aorta at 34 weeks' gestation or more by MRI and compared the results with ultrasonography findings. We measured 6 normal heart fetuses and 14 CHD fetuses. RESULTS The ejection fraction (EF) and descending aorta blood flow in the CHD group were 76.4% ± 11.9%, 687.5 ± 303.8 mL/min by ultrasonography and 48.3% ± 7.1%, 711.4 ± 273.1 mL/min by MRI; those in the normal group were 66.9% ± 12.2%, 898.1 ± 245.9 mL/min by ultrasonography and 51.3% ± 4.2%, 911.9 ± 223.1 mL/min by MRI. CONCLUSIONS There was no significant difference in descending aorta blood flow measurements between ultrasonography and MRI, but the EF showed a significant between-group difference. In the normal group, the variation of EF and blood flow measured by MRI was significantly smaller compared with those of ultrasonography.
Collapse
|
9
|
Kording F, Yamamura J, de Sousa MT, Ruprecht C, Hedström E, Aletras AH, Ellen Grant P, Powell AJ, Fehrs K, Adam G, Kooijman H, Schoennagel BP. Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson 2018; 20:17. [PMID: 29530064 PMCID: PMC5846256 DOI: 10.1186/s12968-018-0440-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fetal cardiovascular magnetic resonance (CMR) imaging may provide a valuable adjunct to fetal echocardiography in the evaluation of congenital cardiovascular pathologies. However, dynamic fetal CMR is difficult due to the lack of direct in-utero cardiac gating. The aim of this study was to investigate the effectiveness of a newly developed Doppler ultrasound (DUS) device in humans for fetal CMR gating. METHODS Fifteen fetuses (gestational age 30-39 weeks) were examined using 1.5 T CMR scanners at three different imaging sites. A newly developed CMR-compatible DUS device was used to generate gating signals from fetal cardiac motion. Gated dynamic balanced steady-state free precession images were acquired in 4-chamber and short-axis cardiac views. Gating signals during data acquisition were analyzed with respect to trigger variability and sensitivity. Image quality was assessed by measuring endocardial blurring (EB) and by image evaluation using a 4-point scale. Left ventricular (LV) volumetry was performed using the single-plane ellipsoid model. RESULTS Gating signals from the fetal heart were detected with a variability of 26 ± 22 ms and a sensitivity of trigger detection of 96 ± 4%. EB was 2.9 ± 0.6 pixels (4-chamber) and 2.5 ± 0.1 pixels (short axis). Image quality scores were 3.6 ± 0.6 (overall), 3.4 ± 0.7 (mitral valve), 3.4 ± 0.7 (foramen ovale), 3.6 ± 0.7 (atrial septum), 3.7 ± 0.5 (papillary muscles), 3.8 ± 0.4 (differentiation myocardium/lumen), 3.7 ± 0.5 (differentiation myocardium/lung), and 3.9 ± 0.4 (systolic myocardial thickening). Inter-observer agreement for the scores was moderate to very good (kappa 0.57-0.84) for all structures. LV volumetry revealed mean values of 2.8 ± 1.2 ml (end-diastolic volume), 0.9 ± 0.4 ml (end systolic volume), 1.9 ± 0.8 ml (stroke volume), and 69.1 ± 8.4% (ejection fraction). CONCLUSION High-quality dynamic fetal CMR was successfully performed using a newly developed DUS device for direct fetal cardiac gating. This technique has the potential to improve the utility of fetal CMR in the evaluation of congenital pathologies.
Collapse
Affiliation(s)
- Fabian Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Manuela Tavares de Sousa
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Erik Hedström
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Anthony H. Aletras
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - P. Ellen Grant
- Departments of Radiology and Medicine, Boston Children’s Hospital, and Harvard Medical School, Boston, MA USA
| | - Andrew J. Powell
- Department of Cardiology and Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kai Fehrs
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | | - Bjoern P. Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
10
|
Li X, Li X, Hu K, Yin C. The value of cardiovascular magnetic resonance in the diagnosis of fetal aortic arch anomalies. J Matern Fetal Neonatal Med 2016; 30:1366-1371. [DOI: 10.1080/14767058.2016.1214126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Dong SZ, Zhu M. MR imaging of fetal cardiac malposition and congenital cardiovascular anomalies on the four-chamber view. SPRINGERPLUS 2016; 5:1214. [PMID: 27516952 PMCID: PMC4967070 DOI: 10.1186/s40064-016-2833-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/14/2016] [Indexed: 11/10/2022]
Abstract
Fetal echocardiography is the method of choice to visualize the fetal congenital cardiovascular anomalies. However, there are some disadvantages. Fetal cardiac magnetic resonance imaging (MRI) has the potential to complement ultrasound in detecting congenital cardiovascular anomalies. This pictorial review draws on our experience about fetal cardiac MRI; it describes the four-chamber view on fetal cardiac MRI and important clues on an abnormal four-chamber view to the diagnosis of fetal congenital cardiovascular anomalies.
Collapse
Affiliation(s)
- Su-Zhen Dong
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Rd., Shanghai, 200127 China
| | - Ming Zhu
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Rd., Shanghai, 200127 China
| |
Collapse
|
12
|
Dong SZ, Zhu M. Pattern-based approach to fetal congenital cardiovascular anomalies using the transverse aortic arch view on prenatal cardiac MRI. Pediatr Radiol 2015; 45:743-50. [PMID: 25149162 DOI: 10.1007/s00247-014-3131-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/10/2014] [Accepted: 07/15/2014] [Indexed: 11/29/2022]
Abstract
Fetal echocardiography is the imaging modality of choice for prenatal diagnosis of congenital cardiovascular anomalies. However, echocardiography has limitations. Fetal cardiac magnetic resonance imaging (MRI) has the potential to complement US in detecting congenital cardiovascular anomalies. This article draws on our experience; it describes the transverse aortic arch view on fetal cardiac MRI and important clues on an abnormal transverse view at the level of the aortic arch to the diagnosis of fetal congenital cardiovascular anomalies.
Collapse
Affiliation(s)
- Su-Zhen Dong
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China
| | | |
Collapse
|
13
|
Manganaro L, Vinci V, Bernardo S, Sollazzo P, Sergi ME, Saldari M, Ventriglia F, Giancotti A, Rizzo G, Catalano C. Magnetic resonance imaging of fetal heart: anatomical and pathological findings. J Matern Fetal Neonatal Med 2014; 27:1213-1219. [PMID: 24102352 DOI: 10.3109/14767058.2013.852174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Congenital heart disease is one of the most frequent prenatal malformation representing an incidence of 5/1000 live births; moreover, it represents the first cause of death in the first year of life. There is a wide range of severity in congenital heart malformations from lesions which require no treatment such as small ventricular septal defects, to lesions which can only be treated with palliative surgery such as hypoplastic left heart syndrome. A good prenatal examination acquires great importance in order to formulate an early diagnosis and improve pregnancy management. Nowadays, echocardiography still represents the gold standard examination for fetal heart disease. However, especially when preliminary ultrasound is inconclusive, fetal MRI is considered as a third-level imaging modality. Preliminary experiences have demonstrated the validity of this reporting a diagnostic accuracy of 79%. Our article aims to outline feasibility of fetal MRI in the anatomic evaluation, the common indication to fetal MRI, its role in the characterization of congenital heart defects, and at last its main limitations.
Collapse
Affiliation(s)
- L Manganaro
- Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, "Sapienza" University of Rome , Rome , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wielandner A, Mlczoch E, Prayer D, Berger-Kulemann V. Potential of magnetic resonance for imaging the fetal heart. Semin Fetal Neonatal Med 2013; 18:286-97. [PMID: 23742821 DOI: 10.1016/j.siny.2013.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significant congenital heart disease (sCHD) affects 3.6 per 1000 births, and is often associated with extracardiac and chromosomal anomalies. Although early mortality has been substantially reduced and the rate of long-term survival has improved, sCHD is, after preterm birth, the second most frequent cause of neonatal infant death. The prenatal detection of cardiac and vascular abnormalities enables optimal parental counselling and perinatal management. Echocardiography (ECG) is the first-line examination and gold standard by which cardiac malformations are defined. However, adequate examination by an experienced healthcare provider with modern technical imaging equipment is required. In addition, maternal factors and the gestational age may lower the image quality. Fetal magnetic resonance imaging (MRI) has been implemented over the last several years and is already used in the clinical routine as a second-line approach to assess fetal abnormalities. MRI of the fetal heart is still not routinely performed. Nevertheless, fetal cardiac MRI has the potential to complement ultrasound in detecting cardiovascular malformations and extracardiac lesions. The present work reviews the potential of MRI to delineate the anatomy and pathologies of the fetal heart. This work also deals with the limitations and continuing developments designed to overcome the current problems in cardiac imaging, including fast fetal heart rates, the lack of ECG-gating, and the presence of fetal movements.
Collapse
Affiliation(s)
- Alice Wielandner
- Department of Radiology, Medical University of Vienna, AKH, Vienna, Austria
| | | | | | | |
Collapse
|
15
|
Foetal echocardiographic assessment of borderline small left ventricles can predict the need for postnatal intervention. Cardiol Young 2013; 23:99-107. [PMID: 22475329 DOI: 10.1017/s1047951112000467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND We sought to prospectively determine foetal echocardiographic factors associated with neonatal interventions in borderline hypoplastic left ventricles. METHODS Foetuses were included who had a left ventricle that was 2-4 standard deviations below normal for length or diameter and had forward flow across the mitral and aortic valves. Factors associated with an intervention in the first month of life or no need for intervention were sought using univariate and multivariate logistic regression models. RESULTS From 2005 to 2008, 47 foetuses meeting the criteria had an additional diagnosis (+foetal coarctation/+transverse arch hypoplasia): atrioventricular septal defect 7 (+2/+0), double outlet right ventricle 2 (+0/+0), Shone's complex 19 (+9/+4), and ventricular disproportion 19 (+13/+11; 4 both). There were seven pregnancies terminated, three foetal demises, and five had compassionate care. There were 32 livebirths that either had a biventricular repair (n = 20, n = 2 dead), univentricular palliation (n = 2, both alive), or no intervention (n = 9). Overall survival of livebirths to 6 months of age was 79%. Factors associated with early intervention on first foetal echocardiogram were: obstructed or retrograde arch flow (p = 0.08, odds ratio 3.3), coarctation (p = 0.05, odds ratio 11.4), and left ventricle outflow obstruction (p = 0.05, odds ratio 12.5). Neonatal factors included: Shone's diagnosis (p = 0.02, odds ratio 4.9), bicuspid aortic valve (p = 0.005, odds ratio 11.7), and larger tricuspid valve z-score (p = 0.05, odds ratio 3.6). A neonatal factor associated with no intervention was a larger mitral valve z-score (mean 23.8 versus 24.2 intervention group, p = 0.04, odds ratio 2.8). DISCUSSION The need for early intervention in foetuses with borderline hypoplastic left ventricle can be predicted by foetal echocardiography.
Collapse
|
16
|
Loomba RS, Chandrasekar S, Shah PH, Sanan P. The developing role of fetal magnetic resonance imaging in the diagnosis of congenital cardiac anomalies: A systematic review. Ann Pediatr Cardiol 2012; 4:172-6. [PMID: 21976881 PMCID: PMC3180979 DOI: 10.4103/0974-2069.84665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Advances in the fetal magnetic resonance imaging (MRI) over the last few years have resulted in the exploring the use of fetal MRI to detect congenital cardiac anomalies. Early detection of congenital cardiac anomalies can help more appropriately manage the infant's delivery and neonatal management. MRI offers anatomical and functional studies and is a safe adjunct that can help more fully understand a fetus' cardiac anatomy. It is important for the obstetricians and pediatric cardiologists to be aware of the recent advancements in fetal MRI and it`s potential utility in diagnosing congenital cardiac anomalies.
Collapse
Affiliation(s)
- Rohit S Loomba
- Department of Pediatrics, Chicago Medical School, 3333 North Green Bay Road, North Chicago, IL
| | | | | | | |
Collapse
|
17
|
Votino C, Jani J, Damry N, Dessy H, Kang X, Cos T, Divano L, Foulon W, De Mey J, Cannie M. Magnetic resonance imaging in the normal fetal heart and in congenital heart disease. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2012; 39:322-329. [PMID: 21837757 DOI: 10.1002/uog.10061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
OBJECTIVE To evaluate prospectively the feasibility of magnetic resonance imaging (MRI) for assessment of the fetal heart for congenital heart disease (CHD). METHODS This was a cross-sectional study, including 66 fetuses with a normal heart and 40 with CHD. The fetal heart was examined on MRI using axial steady-state free precession (SSFP) sequences. Regression analysis was used to investigate the effect on the ability to visualize cardiac anatomy of gestational age at examination, maternal body mass index, presence of fetal cardiac abnormality, fetal movements, fetal lie and twinning. The sensitivity and specificity of detecting cardiac defects were calculated. RESULTS The four-chamber view was visualized in 98.1% of fetuses. The sensitivity of detecting a cardiac defect on the four-chamber view was 88% and the specificity 96%. The ability to visualize the left and right outflow tracts was only influenced by the presence of fetal movements: for the left outflow tract 94.4 vs. 50.0% visualization and for the right outflow tract 92.6 vs. 53.8% visualization without and with fetal movements, respectively. The sensitivity of detecting a cardiac defect of the left outflow tract was 63% and the specificity 100%, while sensitivity and specificity were 59 and 97%, respectively, for the right outflow tract. CONCLUSIONS Despite the use of SSFP sequences, MRI in the fetal heart remains of limited value. It can only be used as a second-line approach for abnormalities of the four-chamber view suspected at prenatal ultrasound.
Collapse
Affiliation(s)
- C Votino
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Brown DW, Powell AJ, Geva T. Imaging complex congenital heart disease — functional single ventricle, the Glenn circulation and the Fontan circulation: A multimodality approach. PROGRESS IN PEDIATRIC CARDIOLOGY 2010. [DOI: 10.1016/j.ppedcard.2009.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|