1
|
Chen J, Liu J, Xu D, Liu J, Chen X, Yang S, Yin P, Jiang Z, Mei C, Zhang X, Wang L, Zhang K, Zhou B, Shan H, Li D, Pang P. Lu 3+-based nanoprobe for virtual non-contrast CT imaging of hepatocellular carcinoma. J Control Release 2022; 349:327-337. [PMID: 35787917 DOI: 10.1016/j.jconrel.2022.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/02/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Transcatheter arterial chemoembolization (TACE), the mainstream treatment for hepatocellular carcinoma (HCC), is a method of blocking tumor blood vessels with a mixture of lipiodol and chemotherapeutics. And the contrast-enhanced computed tomography (CT) is the commonly used way for follow-up of HCC after TACE. However, it is noteworthy that when lipiodol deposition plays an embolic effect, it also produces high-density artifacts in CT images. These artifacts usually conceal the enhancement effect of iodine contrast agents. As a result, the residual region is difficult to be visualized. To overcome this obstacle, we developed one kind of Lu3+/Gd3+ doped fluoride nanoprobe modified with Dp-PEG2000 to realize CT/MRI dual-modality imaging of HCC. Compared with lipiodol or ioversol, the obtained PEGylated product LG-PEG demonstrated a greater density value in high keV CT images. In vitro experiments showed the lipiodol artifacts can be removed in virtual non-contrast (VNC) imaging, but the density of ioversol was also removed at the same time. However, the LG-PEG synthesized in this work can still maintain a high density in VNC imaging, which indicates that LG-PEG can exploit its advantages to the full in VNC imaging. Furthermore, LG-PEG successfully exerted tumor enhancement effects in the in vivo VNC images of HCC with lipiodol deposition. In addition, LG-PEG exhibited a strong T2 enhancement effect with low biological toxicity and less side-effect on the main organ and blood. Thus, the LG-PEG reported in this research can serve as an effective and safe VNC contrast agent for HCC imaging after TACE.
Collapse
Affiliation(s)
- Jiayao Chen
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jiani Liu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Duo Xu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Junfeng Liu
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaojun Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Shuai Yang
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Pan Yin
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Chaoming Mei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaoting Zhang
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Lizhu Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Ke Zhang
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Bin Zhou
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Hong Shan
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Pengfei Pang
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
2
|
Garbino N, Brancato V, Salvatore M, Cavaliere C. A Systematic Review on the Role of the Perfusion Computed Tomography in Abdominal Cancer. Dose Response 2021; 19:15593258211056199. [PMID: 34880716 PMCID: PMC8647276 DOI: 10.1177/15593258211056199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background and purpose Perfusion Computed Tomography (CTp) is an imaging technique which allows
quantitative and qualitative evaluation of tissue perfusion through dynamic
CT acquisitions. Since CTp is still considered a research tool in the field
of abdominal imaging, the aim of this work is to provide a systematic
summary of the current literature on CTp in the abdominal region to clarify
the role of this technique for abdominal cancer applications. Materials and Methods A systematic literature search of PubMed, Web of Science, and Scopus was
performed to identify original articles involving the use of CTp for
clinical applications in abdominal cancer since 2011. Studies were included
if they reported original data on CTp and investigated the clinical
applications of CTp in abdominal cancer. Results Fifty-seven studies were finally included in the study. Most of the included
articles (33/57) dealt with CTp at the level of the liver, while a low
number of studies investigated CTp for oncologic diseases involving UGI
tract (8/57), pancreas (8/57), kidneys (3/57), and colon–rectum (5/57). Conclusions Our study revealed that CTp could be a valuable functional imaging tool in
the field of abdominal oncology, particularly as a biomarker for monitoring
the response to anti-tumoral treatment.
Collapse
|
3
|
Assessment of the embolization effect of temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogels in the rabbit renal artery by CT perfusion and confirmed by macroscopic examination. Sci Rep 2021; 11:4826. [PMID: 33649484 PMCID: PMC7921428 DOI: 10.1038/s41598-021-84372-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Transcatheter embolization is an important treatment method in clinical therapy, and vascular embolization material plays a key role in embolization. The temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogel is a novel embolic agent. To evaluate the feasibility of the nanogel as a blood vessel embolization agent, we aimed to assess the effect of embolization with PIB nanogels in the rabbit renal artery by non-invasive computed tomography (CT) perfusion, macroscopic and histological examination. Ten healthy adult Japanese rabbits were used to implement RAE of PIB nanogels in their right kidneys. CT perfusion scans were performed pre- and post-treatment at various time-points (1, 4, 8, and 12 weeks). Two rabbits were euthanized and histologically examined at each time-point, and the remaining rabbits were euthanized at 12 weeks after embolization. The RAE efficacy of the nanogels was further confirmed by macroscopic and histological examination. The renal volume and renal blood flow (BF) of the right kidney were significantly decreased post-treatment compared with those pre-treatment (volume: pre, 9278 ± 1736 mm3; post 1 week, 5155 ± 979 mm3, P < 0.0001; post 4 weeks, 3952 ± 846 mm3, P < 0.0001; post 8 weeks, 3226 ± 556 mm3, P < 0.0001; post 12 weeks, 2064 ± 507 mm3, P < 0.0001. BF: pre, 530.81 ± 51.50 ml/min/100 ml; post 1 week, 0 ml/min/100 ml, P < 0.0001; post 4 weeks, 0 ml/min/100 ml, P < 0.0001; post 8 weeks, 0 ml/min/100 ml, P < 0.0001; post 12 weeks, 0 ml/min/100 ml, P < 0.0001). No revascularization or collateral circulation was observed on histological examination during this period, and PIB nanogels were dispersed in all levels of the renal arteries. Twelve weeks after embolization, CT perfusion showed no BF in the right renal artery and renal tissue, a finding that was consistent with histological examination showing complete embolization of the right renal artery with a lack of formation of collateral vessels. The effect of embolization on PIB was adequate, with good dispersion and permanency, and could be evaluated by non-invasive and quantitative CT perfusion.
Collapse
|
4
|
Stella SF, Noel-Lamy M, Rogalla P, Beecroft R, Rajan DK. Hepatic Arterial Blood Flow Modulation in Patients with Hepatocellular Carcinoma: A Pilot Study of the Influence of Intraarterial Norepinephrine Assessed with CT Perfusion. J Vasc Interv Radiol 2020; 32:204-210. [PMID: 33358329 DOI: 10.1016/j.jvir.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This pilot study aims to evaluate the effect of hepatic intraarterial norepinephrine injection in vasculature modulation for hepatocellular carcinoma (HCC) tumors. MATERIALS AND METHODS This is a single-center prospective study of patients with HCC with proven single-lobe tumors > 3 cm. Eight patients were included, with a mean age of 63 y ± 8. All patients had Barcelona Clinic Liver Cancer stage B HCC and an Eastern Cooperative Oncology Group performance status of 0. Mean tumor size was 6.1 cm ± 1.8; all tumors were hypervascular. Patients underwent CT hepatic perfusion before and after injection of 24 μg of norepinephrine intraarterially (4 μg/mL; total 6 mL injected at a rate of 1 mL/s). Color-coded perfusion maps were used to assess the effects of local therapy on hepatic perfusion values. Tumor-to-liver ratio (TLR) was calculated from the ratio of tumor perfusion to background liver perfusion value. RESULTS Seven of 8 patents had significant (P = .04) absolute increase in tumor perfusion vs background liver, varying from incremental (-2 mL/min/100 mL) to 290 mL/min/100 mL. There was a nonsignificant increase in TLR from 2.7 ± 1.3 to 2.9 ± 1.4 after norepinephrine injection (P = .8). Mean peak time to maximal increase in tumor perfusion after injection was 6.1 s (range, 4.5-9.1 s). Norepinephrine injection was well tolerated without major adverse events. CONCLUSIONS Norepinephrine causes increased blood flow toward HCC tumors, but with a corresponding smaller increase in blood flow to noncancerous liver tissue, with no observed systemic side effects.
Collapse
Affiliation(s)
- Steffan F Stella
- Division of Vascular and Interventional Radiology, Department of Radiology, Hamilton Health Sciences, McMaster University Medical Centre, McMaster University, Hamilton, Ontario, Canada
| | - Maxime Noel-Lamy
- Department of Radiology, Division of Interventional Radiology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Patrik Rogalla
- Division of Vascular and Interventional Radiology, Toronto General Hospital-University Health Network/University of Toronto, 1PMB-287, 585 University Ave., Toronto, ON, Canada M5G 2N2
| | - Robert Beecroft
- Division of Vascular and Interventional Radiology, Toronto General Hospital-University Health Network/University of Toronto, 1PMB-287, 585 University Ave., Toronto, ON, Canada M5G 2N2
| | - Dheeraj K Rajan
- Division of Vascular and Interventional Radiology, Toronto General Hospital-University Health Network/University of Toronto, 1PMB-287, 585 University Ave., Toronto, ON, Canada M5G 2N2.
| |
Collapse
|
5
|
Bayle M, Clerc-Urmès I, Ayav A, Bronowicki JP, Petit I, Orry X, Laurent V. Computed tomographic perfusion with 160-mm coverage: comparative analysis of hepatocellular carcinoma treated by two transarterial chemoembolization courses relative to magnetic resonance imaging findings. Abdom Radiol (NY) 2019; 44:85-94. [PMID: 30054686 DOI: 10.1007/s00261-018-1714-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to assess hepatocellular carcinoma (HCC) response with CT perfusion parameters before and after two transarterial chemo embolization (TACE) courses compared with MRI, and to search for predictive factors of response. METHODS 37 lesions (19 patients) were included between October 2015 and September 2017, based on the Barcelona Clinic Liver Cancer guidelines. CT perfusion with 160-mm coverage and MRI were performed before and after the first TACE course, and after the second TACE course. Quantitative perfusion parameters were compared to the response assessed with MRI using mRECIST criteria, defining response groups: complete response (CR), partial response (PR), no response (NR), response (including CR and PR), no complete response (NCR, including PR and NR). RESULTS Pre-TACE blood flow (BF) and hepatic arterial blood flow (HABF) were significantly higher in lesions with post-TACE 1 CR than in those with NCR (BF: 118.8 vs. 76.3 mL/100 g/min, p = 0.0231; HABF: 76 vs. 44.2 mL/100 g/min, p = 0.0112). Pre-TACE time to peak (TTP) and mean transit time (MTT) were significantly lower in lesions with post-TACE 2 response than in those with NR (TTP: 31.5 vs. 46.1 s, p = 0.0313; MTT: 15.8 vs. 22.8 s, p = 0.0204). Post-TACE 1 and post-TACE 2 perfusion parameters did not exhibit any statistically significant differences relative to MRI response. CONCLUSION Our study did not find, after a first TACE course, perfusion parameters associated with a response to a second TACE course. However, baseline perfusion parameters analysis could lead to better therapeutic management of HCC by targeting lesions likely to respond well to TACE courses.
Collapse
Affiliation(s)
- Matthieu Bayle
- Department of Radiology, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France.
| | | | - Ahmet Ayav
- Department of HBP Surgery, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, 54500, Vandoeuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Université de Lorraine, Faculté de Médecine, 54500, Vandoeuvre-lès-Nancy, France
- Department of Hepato-gastroenterology, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France
- INSERM, U954, Vandoeuvre-lès-Nancy, France
| | - Isabelle Petit
- Department of Radiology, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France
| | - Xavier Orry
- Department of Radiology, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France
| | - Valérie Laurent
- Department of Radiology, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, 54500, Vandoeuvre-lès-Nancy, France
- INSERM, U947, IADI, 54000, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
6
|
Computed Tomography Perfusion Following Transarterial Chemoembolization of Hepatocellular Carcinoma: A Feasibility Study in the Early Period. J Comput Assist Tomogr 2017; 41:708-712. [PMID: 28296685 DOI: 10.1097/rct.0000000000000592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The aim of this study was to assess the feasibility of computed tomography (CT) perfusion in early follow-up after transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC). METHODS Fifteen patients with a total of 16 HCC who were referred to our institution for TACE were included in the study. Computed tomography perfusion was performed within 1 to 3 days before and 4 to 7 days after TACE. Multiphase contrast-enhanced CT was performed 35 (SD, 20) days after TACE. Hepatic arterial blood flow and portal venous blood flow, as well as the perfusion index (PI), were calculated for each HCC using the dual input maximum slope method. Visual grading of the PI and visual grading of the amount of deposition of embolic material within the HCC were performed using a 6-step scale. Differences in perfusion before and after TACE and correlation of perfusion before TACE with the amount of embolization material depositions 1 week and 1 month after TACE were tested. RESULTS No statistically significant correlation was found between pre-TACE perfusion parameters and the amount of embolization material deposition in the post-TACE studies. There was no statistically significant difference between pre- and post-TACE arterial blood flow and portal venous blood flow, whereas PI was significantly lower after TACE. Congruently, visual grading of PI was statistically significantly lower after TACE. There was no statistically significant difference in quantitative pre-TACE and post-TACE PI between tumors, which showed hypervascularization in the multiphase follow-up CT and tumors that did not show hypervascularization. However, tumors that showed hypervascularization in the multiphase follow-up CT had significantly higher visual grading of PI after TACE than tumors that did not show hypervascularization. CONCLUSIONS Our findings indicate that visual interpretation of the PI of HCC derived from dual-input maximum slope CT perfusion may be an early predictor of response to TACE.
Collapse
|